Gradient Boost Convolutional Autoencoder with Neural Decision Forest (GrCAN) google
Random forest and deep neural network are two schools of effective classification methods in machine learning. While the random forest is robust irrespective of the data domain, the deep neural network has advantages in handling high dimensional data. In view that a differentiable neural decision forest can be added to the neural network to fully exploit the benefits of both models, in our work, we further combine convolutional autoencoder with neural decision forest, where autoencoder has its advantages in finding the hidden representations of the input data. We develop a gradient boost module and embed it into the proposed convolutional autoencoder with neural decision forest to improve the performance. The idea of gradient boost is to learn and use the residual in the prediction. In addition, we design a structure to learn the parameters of the neural decision forest and gradient boost module at contiguous steps. The extensive experiments on several public datasets demonstrate that our proposed model achieves good efficiency and prediction performance compared with a series of baseline methods. …

Discrete Neural Process google
Many data generating processes involve latent random variables over discrete combinatorial spaces whose size grows factorially with the dataset. In these settings, existing posterior inference methods can be inaccurate and/or very slow. In this work we develop methods for efficient amortized approximate Bayesian inference over discrete combinatorial spaces, with applications to random permutations, probabilistic clustering (such as Dirichlet process mixture models) and random communities (such as stochastic block models). The approach is based on mapping distributed, symmetry-invariant representations of discrete arrangements into conditional probabilities. The resulting algorithms parallelize easily, yield iid samples from the approximate posteriors, and can easily be applied to both conjugate and non-conjugate models, as training only requires samples from the generative model. …

Confident Multiple Choice Learning (CMCL) google
Ensemble methods are arguably the most trustworthy techniques for boosting the performance of machine learning models. Popular independent ensembles (IE) relying on naive averaging/voting scheme have been of typical choice for most applications involving deep neural networks, but they do not consider advanced collaboration among ensemble models. In this paper, we propose new ensemble methods specialized for deep neural networks, called confident multiple choice learning (CMCL): it is a variant of multiple choice learning (MCL) via addressing its overconfidence issue.In particular, the proposed major components of CMCL beyond the original MCL scheme are (i) new loss, i.e., confident oracle loss, (ii) new architecture, i.e., feature sharing and (iii) new training method, i.e., stochastic labeling. We demonstrate the effect of CMCL via experiments on the image classification on CIFAR and SVHN, and the foreground-background segmentation on the iCoseg. In particular, CMCL using 5 residual networks provides 14.05% and 6.60% relative reductions in the top-1 error rates from the corresponding IE scheme for the classification task on CIFAR and SVHN, respectively. …

Diverse Paraphrase Generation (D-PAGE) google
In this paper, we investigate the diversity aspect of paraphrase generation. Prior deep learning models employ either decoding methods or add random input noise for varying outputs. We propose a simple method Diverse Paraphrase Generation (D-PAGE), which extends neural machine translation (NMT) models to support the generation of diverse paraphrases with implicit rewriting patterns. Our experimental results on two real-world benchmark datasets demonstrate that our model generates at least one order of magnitude more diverse outputs than the baselines in terms of a new evaluation metric Jeffrey’s Divergence. We have also conducted extensive experiments to understand various properties of our model with a focus on diversity. …