Lariat google
We propose a new method for supervised learning, especially suited to wide data where the number of features is much greater than the number of observations. The method combines the lasso ($\ell_1$) sparsity penalty with a quadratic penalty that shrinks the coefficient vector toward the leading principal components of the feature matrix. We call the proposed method the ‘Lariat’. The method can be especially powerful if the features are pre-assigned to groups (such as cell-pathways, assays or protein interaction networks). In that case, the Lariat shrinks each group-wise component of the solution toward the leading principal components of that group. In the process, it also carries out selection of the feature groups. We provide some theory for this method and illustrate it on a number of simulated and real data examples. …

TigerGraph google
We present TigerGraph, a graph database system built from the ground up to support massively parallel computation of queries and analytics. TigerGraph’s high-level query language, GSQL, is designed for compatibility with SQL, while simultaneously allowing NoSQL programmers to continue thinking in Bulk-Synchronous Processing (BSP) terms and reap the benefits of high-level specification. GSQL is sufficiently high-level to allow declarative SQL-style programming, yet sufficiently expressive to concisely specify the sophisticated iterative algorithms required by modern graph analytics and traditionally coded in general-purpose programming languages like C++ and Java. We report very strong scale-up and scale-out performance over a benchmark we published on GitHub for full reproducibility. …

Simion Zoo google
We present Simion Zoo, a Reinforcement Learning (RL) workbench that provides a complete set of tools to design, run, and analyze the results,both statistically and visually, of RL control applications. The main features that set apart Simion Zoo from similar software packages are its easy-to-use GUI, its support for distributed execution including deployment over graphics processing units (GPUs) , and the possibility to explore concurrently the RL metaparameter space, which is key to successful RL experimentation. …

Relation-aware Graph Attention Network (ReGAT) google
In order to answer semantically-complicated questions about an image, a Visual Question Answering (VQA) model needs to fully understand the visual scene in the image, especially the interactive dynamics between different objects. We propose a Relation-aware Graph Attention Network (ReGAT), which encodes each image into a graph and models multi-type inter-object relations via a graph attention mechanism, to learn question-adaptive relation representations. Two types of visual object relations are explored: (i) Explicit Relations that represent geometric positions and semantic interactions between objects; and (ii) Implicit Relations that capture the hidden dynamics between image regions. Experiments demonstrate that ReGAT outperforms prior state-of-the-art approaches on both VQA 2.0 and VQA-CP v2 datasets. We further show that ReGAT is compatible to existing VQA architectures, and can be used as a generic relation encoder to boost the model performance for VQA. …