Heterogeneous Tasks on Homogeneous Cores (HTHC) google
A new generation of manycore processors is on the rise that offers dozens and more cores on a chip and, in a sense, fuses host processor and accelerator. In this paper we target the efficient training of generalized linear models on these machines. We propose a novel approach for achieving parallelism which we call Heterogeneous Tasks on Homogeneous Cores (HTHC). It divides the problem into multiple fundamentally different tasks, which themselves are parallelized. For evaluation, we design a detailed, architecture-cognizant implementation of our scheme on a recent 72-core Knights Landing processor that is adaptive to the cache, memory, and core structure. Experiments for Lasso and SVM with different data sets show a speedup of typically an order of magnitude compared to straightforward parallel implementations in C++. …

Probabilistic Surface Optimization (PSO) google
In this paper we contribute a novel algorithm family, which generalizes many unsupervised techniques including unnormalized and energy models, and allows to infer different statistical modalities (e.g.~data likelihood and ratio between densities) from data samples. The proposed unsupervised technique Probabilistic Surface Optimization (PSO) views a neural network (NN) as a flexible surface which can be pushed according to loss-specific virtual stochastic forces, where a dynamical equilibrium is achieved when the point-wise forces on the surface become equal. Concretely, the surface is pushed up and down at points sampled from two different distributions, with overall up and down forces becoming functions of these two distribution densities and of force intensity magnitudes defined by loss of a particular PSO instance. The eventual force equilibrium upon convergence enforces the NN to be equal to various statistical functions depending on the used magnitude functions, such as data density. Furthermore, this dynamical-statistical equilibrium is extremely intuitive and useful, providing many implications and possible usages in probabilistic inference. Further, we provide new PSO-based approaches as demonstration of PSO exceptional usability. We also analyze PSO convergence and optimization stability, and relate them to the gradient similarity function over NN input space. Further, we propose new ways to improve the above stability. Finally, we present new instances of PSO, termed PSO-LDE, for data density estimation on logarithmic scale and also provide a new NN block-diagonal architecture for increased surface flexibility, which significantly improves estimation accuracy. Both PSO-LDE and the new architecture are combined together as a new density estimation technique. In our experiments we demonstrate this technique to produce highly accurate density estimation for 20D data. …

Censoring google
In statistics, engineering, economics, and medical research, censoring is a condition in which the value of a measurement or observation is only partially known. For example, suppose a study is conducted to measure the impact of a drug on mortality rate. In such a study, it may be known that an individual’s age at death is at least 75 years (but may be more). Such a situation could occur if the individual withdrew from the study at age 75, or if the individual is currently alive at the age of 75. Censoring also occurs when a value occurs outside the range of a measuring instrument. For example, a bathroom scale might only measure up to 300 pounds (140 kg). If a 350 lb (160 kg) individual is weighed using the scale, the observer would only know that the individual’s weight is at least 300 pounds (140 kg). The problem of censored data, in which the observed value of some variable is partially known, is related to the problem of missing data, where the observed value of some variable is unknown. Censoring should not be confused with the related idea truncation. With censoring, observations result either in knowing the exact value that applies, or in knowing that the value lies within an interval. With truncation, observations never result in values outside a given range: values in the population outside the range are never seen or never recorded if they are seen. Note that in statistics, truncation is not the same as rounding. …

Latitude google
Nonnegative matrix factorization (NMF) is one of the most frequently-used matrix factorization models in data analysis. A significant reason to the popularity of NMF is its interpretability and the `parts of whole’ interpretation of its components. Recently, max-times, or subtropical, matrix factorization (SMF) has been introduced as an alternative model with equally interpretable `winner takes it all’ interpretation. In this paper we propose a new mixed linear–tropical model, and a new algorithm, called Latitude, that combines NMF and SMF, being able to smoothly alternate between the two. In our model, the data is modeled using the latent factors and latent parameters that control whether the factors are interpreted as NMF or SMF features, or their mixtures. We present an algorithm for our novel matrix factorization. Our experiments show that our algorithm improves over both baselines, and can yield interpretable results that reveal more of the latent structure than either NMF or SMF alone. …