LAmbdaPACK
Linear algebra operations are widely used in scientific computing and machine learning applications. However, it is challenging for scientists and data analysts to run linear algebra at scales beyond a single machine. Traditional approaches either require access to supercomputing clusters, or impose configuration and cluster management challenges. In this paper we show how the disaggregation of storage and compute resources in so-called ‘serverless’ environments, combined with compute-intensive workload characteristics, can be exploited to achieve elastic scalability and ease of management. We present numpywren, a system for linear algebra built on a serverless architecture. We also introduce LAmbdaPACK, a domain-specific language designed to implement highly parallel linear algebra algorithms in a serverless setting. We show that, for certain linear algebra algorithms such as matrix multiply, singular value decomposition, and Cholesky decomposition, numpywren’s performance (completion time) is within 33% of ScaLAPACK, and its compute efficiency (total CPU-hours) is up to 240% better due to elasticity, while providing an easier to use interface and better fault tolerance. At the same time, we show that the inability of serverless runtimes to exploit locality across the cores in a machine fundamentally limits their network efficiency, which limits performance on other algorithms such as QR factorization. This highlights how cloud providers could better support these types of computations through small changes in their infrastructure. …
Inner Source
Inner source is the use of open source software development best practices and the establishment of an open source-like culture within organizations. The organization may still develop proprietary software, but internally opens up its development. The term was coined by Tim O’Reilly in 2000. …
Gene-pool Optimal Mixing Evolutionary Algorithm
GOMEA belongs to the class of Model-Based EAs (MBEAs) and focuses particularly on efficiently learning and exploiting so-called linkage models that describe dependencies between the variables that are used to encode solutions to the optimization problem at hand.
Model-based Genetic Programming with GOMEA for Symbolic Regression of Small Expressions …
Generative Adversarial Privacy (GAP)
We present a data-driven framework called generative adversarial privacy (GAP). Inspired by recent advancements in generative adversarial networks (GANs), GAP allows the data holder to learn the privatization mechanism directly from the data. Under GAP, finding the optimal privacy mechanism is formulated as a constrained minimax game between a privatizer and an adversary. We show that for appropriately chosen adversarial loss functions, GAP provides privacy guarantees against strong information-theoretic adversaries. We also evaluate the performance of GAP on multi-dimensional Gaussian mixture models and the GENKI face database. …
If you did not already know
29 Friday Oct 2021
Posted What is ...
in