Satisficing
Satisficing is a decision-making strategy or cognitive heuristic that entails searching through the available alternatives until an acceptability threshold is met. The term satisficing, a portmanteau of satisfy and suffice, was introduced by Herbert A. Simon in 1956, although the concept was first posted in his 1947 book Administrative Behavior. Simon used satisficing to explain the behavior of decision makers under circumstances in which an optimal solution cannot be determined. He maintained that many natural problems are characterized by computational intractability or a lack of information, both of which preclude the use of mathematical optimization procedures. He observed in his Nobel Prize in Economics speech that ‘decision makers can satisfice either by finding optimum solutions for a simplified world, or by finding satisfactory solutions for a more realistic world. Neither approach, in general, dominates the other, and both have continued to co-exist in the world of management science’. …
Parameter Hub (PHub)
Most work in the deep learning systems community has focused on faster inference, but arriving at a trained model requires lengthy experiments. Accelerating training lets developers iterate faster and come up with better models. DNN training is often seen as a compute-bound problem, best done in a single large compute node with many GPUs. As DNNs get bigger, training requires going distributed. Distributed deep neural network (DDNN) training constitutes an important workload on the cloud. Larger DNN models and faster compute engines shift training performance bottleneck from computation to communication. Our experiments show existing DNN training frameworks do not scale in a typical cloud environment due to insufficient bandwidth and inefficient parameter server software stacks. We propose PHub, a high performance parameter server (PS) software design that provides an optimized network stack and a streamlined gradient processing pipeline to benefit common PS setups, and PBox, a balanced, scalable central PS hardware that fully utilizes PHub capabilities. We show that in a typical cloud environment, PHub can achieve up to 3.8x speedup over state-of-theart designs when training ImageNet. We discuss future directions of integrating PHub with programmable switches for in-network aggregation during training, leveraging the datacenter network topology to reduce bandwidth usage and localize data movement. …
Convolutional Spiking Neural Network
Spiking neural networks are motivated from principles of neural systems and may possess unexplored advantages in the context of machine learning. A class of \textit{convolutional spiking neural networks} is introduced, trained to detect image features with an unsupervised, competitive learning mechanism. Image features can be shared within subpopulations of neurons, or each may evolve independently to capture different features in different regions of input space. We analyze the time and memory requirements of learning with and operating such networks. The MNIST dataset is used as an experimental testbed, and comparisons are made between the performance and convergence speed of a baseline spiking neural network. …
ContextNet
Modern deep learning architectures produce highly accurate results on many challenging semantic segmentation datasets. State-of-the-art methods are, however, not directly transferable to real-time applications or embedded devices, since naive adaptation of such systems to reduce computational cost (speed, memory and energy) causes a significant drop in accuracy. We propose ContextNet, a new deep neural network architecture which builds on factorized convolution, network compression and pyramid representations to produce competitive semantic segmentation in real-time with low memory requirements. ContextNet combines a deep branch at low resolution that captures global context information efficiently with a shallow branch that focuses on high-resolution segmentation details. We analyze our network in a thorough ablation study and present results on the Cityscapes dataset, achieving 66.1% accuracy at 18.2 frames per second at full (1024×2048) resolution. …
If you did not already know
20 Wednesday Oct 2021
Posted What is ...
in