Binary Matching Pursuit google
We study the problem of learning latent feature models (LFMs) for tensor data commonly observed in science and engineering such as hyperspectral imagery. However, the problem is challenging not only due to the non-convex formulation, the combinatorial nature of the constraints in LFMs, but also the high-order correlations in the data. In this work, we formulate a tensor latent feature learning problem by representing the data as a mixture of high-order latent features and binary codes, which are memory efficient and easy to interpret. To make the learning tractable, we propose a novel optimization procedure, Binary matching pursuit (BMP), that iteratively searches for binary bases via a MAXCUT-like boolean quadratic solver. Such a procedure is guaranteed to achieve an? suboptimal solution in O($1/\epsilon$) greedy steps, resulting in a trade-off between accuracy and sparsity. When evaluated on both synthetic and real datasets, our experiments show superior performance over baseline methods. …

IFSAD google
Ensemble learning for anomaly detection of data structured into complex network has been barely studied due to the inconsistent performance of complex network characteristics and lack of inherent objective function. In this paper, we propose the IFSAD, a new two-phase ensemble method for anomaly detection based on intuitionistic fuzzy set, and applies it to the abnormal behavior detection problem in temporal complex networks. First, it constructs the intuitionistic fuzzy set of single network characteristic which quantifies the degree of membership, non-membership and hesitation of each of network characteristic to the defined linguistic variables so that makes the unuseful or noise characteristics become part of the detection. To build an objective intuitionistic fuzzy relationship, we propose an Gaussian distribution-based membership function which gives a variable hesitation degree. Then, for the fuzzification of multiple network characteristics, the intuitionistic fuzzy weighted geometric operator is adopted to fuse multiple IFSs and to avoid the inconsistent of multiple characteristics. Finally, the score function and precision function are used to sort the fused IFS. Finally we carried out extensive experiments on several complex network datasets for anomaly detection, and the results demonstrate the superiority of our method to state-of-the-art approaches, validating the effectiveness of our method. …

Quantum Low Entropy based Associative Reasoning (QLEAR learning) google
In this paper, we propose the classification method based on a learning paradigm we are going to call Quantum Low Entropy based Associative Reasoning or QLEAR learning. The approach is based on the idea that classification can be understood as supervised clustering, where a quantum entropy in the context of the quantum probabilistic model, will be used as a ‘capturer’ (measure, or external index), of the ‘natural structure’ of the data. By using quantum entropy we do not make any assumption about linear separability of the data that are going to be classified. The basic idea is to find close neighbors to a query sample and then use relative change in the quantum entropy as a measure of similarity of the newly arrived sample with the representatives of interest. In other words, method is based on calculation of quantum entropy of the referent system and its relative change with the addition of the newly arrived sample. Referent system consists of vectors that represent individual classes and that are the most similar, in Euclidean distance sense, to the vector that is analyzed. Here, we analyze the classification problem in the context of measuring similarities to prototype examples of categories. While nearest neighbor classifiers are natural in this setting, they suffer from the problem of high variance (in bias-variance decomposition) in the case of limited sampling. Alternatively, one could use machine learning techniques (like support vector machines) but they involve time-consuming optimization. Here we propose a hybrid of nearest neighbor and machine learning technique which deals naturally with the multi-class setting, has reasonable computational complexity both in training and at run time, and yields excellent results in practice. …

Hyperbolic Recommender System google
Many well-established recommender systems are based on representation learning in Euclidean space. In these models, matching functions such as the Euclidean distance or inner product are typically used for computing similarity scores between user and item embeddings. This paper investigates the notion of learning user and item representations in Hyperbolic space. In this paper, we argue that Hyperbolic space is more suitable for learning user-item embeddings in the recommendation domain. Unlike Euclidean spaces, Hyperbolic spaces are intrinsically equipped to handle hierarchical structure, encouraged by its property of exponentially increasing distances away from origin. We propose HyperBPR (Hyperbolic Bayesian Personalized Ranking), a conceptually simple but highly effective model for the task at hand. Our proposed HyperBPR not only outperforms their Euclidean counterparts, but also achieves state-of-the-art performance on multiple benchmark datasets, demonstrating the effectiveness of personalized recommendation in Hyperbolic space. …