GenAttack
Deep neural networks (DNNs) are vulnerable to adversarial examples, even in the black-box case, where the attacker is limited to solely query access. Existing blackbox approaches to generating adversarial examples typically require a significant amount of queries, either for training a substitute network or estimating gradients from the output scores. We introduce GenAttack, a gradient-free optimization technique which uses genetic algorithms for synthesizing adversarial examples in the black-box setting. Our experiments on the MNIST, CIFAR-10, and ImageNet datasets show that GenAttack can successfully generate visually imperceptible adversarial examples against state-of-the-art image recognition models with orders of magnitude fewer queries than existing approaches. For example, in our CIFAR-10 experiments, GenAttack required roughly 2,568 times less queries than the current state-of-the-art black-box attack. Furthermore, we show that GenAttack can successfully attack both the state-of-the-art ImageNet defense, ensemble adversarial training, and non-differentiable, randomized input transformation defenses. GenAttack’s success against ensemble adversarial training demonstrates that its query efficiency enables it to exploit the defense’s weakness to direct black-box attacks. GenAttack’s success against non-differentiable input transformations indicates that its gradient-free nature enables it to be applicable against defenses which perform gradient masking/obfuscation to confuse the attacker. Our results suggest that population-based optimization opens up a promising area of research into effective gradient-free black-box attacks. …
BagNet
Deep Neural Networks (DNNs) excel on many complex perceptual tasks but it has proven notoriously difficult to understand how they reach their decisions. We here introduce a high-performance DNN architecture on ImageNet whose decisions are considerably easier to explain. Our model, a simple variant of the ResNet-50 architecture called BagNet, classifies an image based on the occurrences of small local image features without taking into account their spatial ordering. This strategy is closely related to the bag-of-feature (BoF) models popular before the onset of deep learning and reaches a surprisingly high accuracy on ImageNet (87.6% top-5 for 33 x 33 px features and Alexnet performance for 17 x 17 px features). The constraint on local features makes it straight-forward to analyse how exactly each part of the image influences the classification. Furthermore, the BagNets behave similar to state-of-the art deep neural networks such as VGG-16, ResNet-152 or DenseNet-169 in terms of feature sensitivity, error distribution and interactions between image parts. This suggests that the improvements of DNNs over previous bag-of-feature classifiers in the last few years is mostly achieved by better fine-tuning rather than by qualitatively different decision strategies. …
QA-NLI
Existing datasets for natural language inference (NLI) have propelled research on language understanding. We propose a new method for automatically deriving NLI datasets from the growing abundance of large-scale question answering datasets. Our approach hinges on learning a sentence transformation model which converts question-answer pairs into their declarative forms. Despite being primarily trained on a single QA dataset, we show that it can be successfully applied to a variety of other QA resources. Using this system, we automatically derive a new freely available dataset of over 500k NLI examples (QA-NLI), and show that it exhibits a wide range of inference phenomena rarely seen in previous NLI datasets. …
Flair
A very simple framework for state-of-the-art Natural Language Processing (NLP) …
If you did not already know
03 Sunday Oct 2021
Posted What is ...
in