VIoLET google
IoT deployments have been growing manifold, encompassing sensors, networks, edge, fog and cloud resources. Despite the intense interest from researchers and practitioners, most do not have access to large-scale IoT testbeds for validation. Simulation environments that allow analytical modeling are a poor substitute for evaluating software platforms or application workloads in realistic computing environments. Here, we propose VIoLET, a virtual environment for defining and launching large-scale IoT deployments within cloud VMs. It offers a declarative model to specify container-based compute resources that match the performance of the native edge, fog and cloud devices using Docker. These can be inter-connected by complex topologies on which private/public networks, and bandwidth and latency rules are enforced. Users can configure synthetic sensors for data generation on these devices as well. We validate VIoLET for deployments with > 400 devices and > 1500 device-cores, and show that the virtual IoT environment closely matches the expected compute and network performance at modest costs. This fills an important gap between IoT simulators and real deployments. …

Chan-Darwiche Distance google
We propose a distance measure between two probability distributions, which allows one to bound the amount of belief change that occurs when moving from one distribution to another. We contrast the proposed measure with some well known measures, including KL-divergence, showing some theoretical properties on its ability to bound belief changes. We then present two practical applications of the proposed distance measure: sensitivity analysis in belief networks and probabilistic belief revision. We show how the distance measure can be easily computed in these applications, and then use it to bound global belief changes that result from either the perturbation of local conditional beliefs or the accommodation of soft evidence. Finally, we show that two well known techniques in sensitivity analysis and belief revision correspond to the minimization of our proposed distance measure and, hence, can be shown to be optimal from that viewpoint. …

Pattern Theory google
Pattern theory, formulated by Ulf Grenander, is a mathematical formalism to describe knowledge of the world as patterns. It differs from other approaches to artificial intelligence in that it does not begin by prescribing algorithms and machinery to recognize and classify patterns; rather, it prescribes a vocabulary to articulate and recast the pattern concepts in precise language. In addition to the new algebraic vocabulary, its statistical approach was novel in its aim to:
· Identify the hidden variables of a data set using real world data rather than artificial stimuli, which was commonplace at the time.
· Formulate prior distributions for hidden variables and models for the observed variables that form the vertices of a Gibbs-like graph.
· Study the randomness and variability of these graphs.
· Create the basic classes of stochastic models applied by listing the deformations of the patterns.
· Synthesize (sample) from the models, not just analyze signals with it.
Broad in its mathematical coverage, Pattern Theory spans algebra and statistics, as well as local topological and global entropic properties. …

Owl google
Owl is a new numerical library developed in the OCaml language. It focuses on providing a comprehensive set of high-level numerical functions so that developers can quickly build up data analytical applications. In this abstract, we will present Owl’s design, core components, and its key functionality. …