Composite Indicator (COIN)
A composite indicator is formed when individual indicators are compiled into a single index, on the basis of an underlying model of the multi-dimensional concept that is being measured. A composite indicator measures multi-dimensional concepts (e.g. competitiveness, e-trade or environmental quality) which cannot be captured by a single indicator. Ideally, a composite indicator should be based on a theoretical framework / definition, which allows individual indicators / variables to be selected, combined and weighted in a manner which reflects the dimensions or structure of the phenomena being measured. …
GSimCNN
Graph Edit Distance (GED) computation is a core operation of many widely-used graph applications, such as graph classification, graph matching, and graph similarity search. However, computing the exact GED between two graphs is NP-complete. Most current approximate algorithms are based on solving a combinatorial optimization problem, which involves complicated design and high time complexity. In this paper, we propose a novel end-to-end neural network based approach to GED approximation, aiming to alleviate the computational burden while preserving good performance. The proposed approach, named GSimCNN, turns GED computation into a learning problem. Each graph is considered as a set of nodes, represented by learnable embedding vectors. The GED computation is then considered as a two-set matching problem, where a higher matching score leads to a lower GED. A Convolutional Neural Network (CNN) based approach is proposed to tackle the set matching problem. We test our algorithm on three real graph datasets, and our model achieves significant performance enhancement against state-of-the-art approximate GED computation algorithms. …
DeepAtlas
Deep convolutional neural networks (CNNs) are state-of-the-art for semantic image segmentation, but typically require many labeled training samples. Obtaining 3D segmentations of medical images for supervised training is difficult and labor intensive. Motivated by classical approaches for joint segmentation and registration we therefore propose a deep learning framework that jointly learns networks for image registration and image segmentation. In contrast to previous work on deep unsupervised image registration, which showed the benefit of weak supervision via image segmentations, our approach can use existing segmentations when available and computes them via the segmentation network otherwise, thereby providing the same registration benefit. Conversely, segmentation network training benefits from the registration, which essentially provides a realistic form of data augmentation. Experiments on knee and brain 3D magnetic resonance (MR) images show that our approach achieves large simultaneous improvements of segmentation and registration accuracy (over independently trained networks) and allows training high-quality models with very limited training data. Specifically, in a one-shot-scenario (with only one manually labeled image) our approach increases Dice scores (%) over an unsupervised registration network by 2.7 and 1.8 on the knee and brain images respectively. …
HierLPR
In this article we propose a novel ranking algorithm, referred to as HierLPR, for the multi-label classification problem when the candidate labels follow a known hierarchical structure. HierLPR is motivated by a new metric called eAUC that we design to assess the ranking of classification decisions. This metric, associated with the hit curve and local precision rate, emphasizes the accuracy of the first calls. We show that HierLPR optimizes eAUC under the tree constraint and some light assumptions on the dependency between the nodes in the hierarchy. We also provide a strategy to make calls for each node based on the ordering produced by HierLPR, with the intent of controlling FDR or maximizing F-score. The performance of our proposed methods is demonstrated on synthetic datasets as well as a real example of disease diagnosis using NCBI GEO datasets. In these cases, HierLPR shows a favorable result over competing methods in the early part of the precision-recall curve. …
If you did not already know
17 Friday Sep 2021
Posted What is ...
in