Rule-Guided Embedding (RUGE) google
Embedding knowledge graphs (KGs) into continuous vector spaces is a focus of current research. Combining such an embedding model with logic rules has recently attracted increasing attention. Most previous attempts made a one-time injection of logic rules, ignoring the interactive nature between embedding learning and logical inference. And they focused only on hard rules, which always hold with no exception and usually require extensive manual effort to create or validate. In this paper, we propose Rule-Guided Embedding (RUGE), a novel paradigm of KG embedding with iterative guidance from soft rules. RUGE enables an embedding model to learn simultaneously from 1) labeled triples that have been directly observed in a given KG, 2) unlabeled triples whose labels are going to be predicted iteratively, and 3) soft rules with various confidence levels extracted automatically from the KG. In the learning process, RUGE iteratively queries rules to obtain soft labels for unlabeled triples, and integrates such newly labeled triples to update the embedding model. Through this iterative procedure, knowledge embodied in logic rules may be better transferred into the learned embeddings. We evaluate RUGE in link prediction on Freebase and YAGO. Experimental results show that: 1) with rule knowledge injected iteratively, RUGE achieves significant and consistent improvements over state-of-the-art baselines; and 2) despite their uncertainties, automatically extracted soft rules are highly beneficial to KG embedding, even those with moderate confidence levels. The code and data used for this paper can be obtained from https://…/RUGE.

Adversarial Generator-Encoder Networks google
We present a new autoencoder-type architecture, that is trainable in an unsupervised mode, sustains both generation and inference, and has the quality of conditional and unconditional samples boosted by adversarial learning. Unlike previous hybrids of autoencoders and adversarial networks, the adversarial game in our approach is set up directly between the encoder and the generator, and no external mappings are trained in the process of learning. The game objective compares the divergences of each of the real and the generated data distributions with the canonical distribution in the latent space. We show that direct generator-vs-encoder game leads to a tight coupling of the two components, resulting in samples and reconstructions of a comparable quality to some recently-proposed more complex architectures. …

Attention-Based Feature Selection (AFS) google
As an effective data preprocessing step, feature selection has shown its effectiveness to prepare high-dimensional data for many machine learning tasks. The proliferation of high di-mension and huge volume big data, however, has brought major challenges, e.g. computation complexity and stability on noisy data, upon existing feature-selection techniques. This paper introduces a novel neural network-based feature selection architecture, dubbed Attention-based Feature Selection (AFS). AFS consists of two detachable modules: an at-tention module for feature weight generation and a learning module for the problem modeling. The attention module for-mulates correlation problem among features and supervision target into a binary classification problem, supported by a shallow attention net for each feature. Feature weights are generated based on the distribution of respective feature se-lection patterns adjusted by backpropagation during the train-ing process. The detachable structure allows existing off-the-shelf models to be directly reused, which allows for much less training time, demands for the training data and requirements for expertise. A hybrid initialization method is also intro-duced to boost the selection accuracy for datasets without enough samples for feature weight generation. Experimental results show that AFS achieves the best accuracy and stability in comparison to several state-of-art feature selection algo-rithms upon both MNIST, noisy MNIST and several datasets with small samples. …

Dense xUnit Net (DxNet) google
Deep net architectures have constantly evolved over the past few years, leading to significant advancements in a wide array of computer vision tasks. However, besides high accuracy, many applications also require a low computational load and limited memory footprint. To date, efficiency has typically been achieved either by architectural choices at the macro level (e.g. using skip connections or pruning techniques) or modifications at the level of the individual layers (e.g. using depth-wise convolutions or channel shuffle operations). Interestingly, much less attention has been devoted to the role of the activation functions in constructing efficient nets. Recently, Kligvasser et al. showed that incorporating spatial connections within the activation functions, enables a significant boost in performance in image restoration tasks, at any given budget of parameters. However, the effectiveness of their xUnit module has only been tested on simple small models, which are not characteristic of those used in high-level vision tasks. In this paper, we adopt and improve the xUnit activation, show how it can be incorporated into the DenseNet architecture, and illustrate its high effectiveness for classification and image restoration tasks alike. While the DenseNet architecture is extremely efficient to begin with, our dense xUnit net (DxNet) can typically achieve the same performance with far fewer parameters. For example, on ImageNet, our DxNet outperforms a ReLU-based DenseNet having 30% more parameters and achieves state-of-the-art results for this budget of parameters. Furthermore, in denoising and super-resolution, DxNet significantly improves upon all existing lightweight solutions, including the xUnit-based nets of Kligvasser et al. …