Adversarial Network Embedding google
Learning low-dimensional representations of networks has proved effective in a variety of tasks such as node classification, link prediction and network visualization. Existing methods can effectively encode different structural properties into the representations, such as neighborhood connectivity patterns, global structural role similarities and other high-order proximities. However, except for objectives to capture network structural properties, most of them suffer from lack of additional constraints for enhancing the robustness of representations. In this paper, we aim to exploit the strengths of generative adversarial networks in capturing latent features, and investigate its contribution in learning stable and robust graph representations. Specifically, we propose an Adversarial Network Embedding (ANE) framework, which leverages the adversarial learning principle to regularize the representation learning. It consists of two components, i.e., a structure preserving component and an adversarial learning component. The former component aims to capture network structural properties, while the latter contributes to learning robust representations by matching the posterior distribution of the latent representations to given priors. As shown by the empirical results, our method is competitive with or superior to state-of-the-art approaches on benchmark network embedding tasks. …

Prototype Reminding google
Continual learning is a critical ability of continually acquiring and transferring knowledge without catastrophically forgetting previously learned knowledge. However, enabling continual learning for AI remains a long-standing challenge. In this work, we propose a novel method, Prototype Reminding, that efficiently embeds and recalls previously learnt knowledge to tackle catastrophic forgetting issue. In particular, we consider continual learning in classification tasks. For each classification task, our method learns a metric space containing a set of prototypes where embedding of the samples from the same class cluster around prototypes and class-representative prototypes are separated apart. To alleviate catastrophic forgetting, our method preserves the embedding function from the samples to the previous metric space, through our proposed prototype reminding from previous tasks. Specifically, the reminding process is implemented by replaying a small number of samples from previous tasks and correspondingly matching their embedding to their nearest class-representative prototypes. Compared with recent continual learning methods, our contributions are fourfold: first, our method achieves the best memory retention capability while adapting quickly to new tasks. Second, our method uses metric learning for classification, and does not require adding in new neurons given new object classes. Third, our method is more memory efficient since only class-representative prototypes need to be recalled. Fourth, our method suggests a promising solution for few-shot continual learning. Without tampering with the performance on initial tasks, our method learns novel concepts given a few training examples of each class in new tasks. …

Hierarchical LSTM With Adaptive Attention (hLSTMat) google
Recent progress has been made in using attention based encoder-decoder framework for image and video captioning. Most existing decoders apply the attention mechanism to every generated word including both visual words (e.g., ‘gun’ and ‘shooting’) and non-visual words (e.g. ‘the’, ‘a’). However, these non-visual words can be easily predicted using natural language model without considering visual signals or attention. Imposing attention mechanism on non-visual words could mislead and decrease the overall performance of visual captioning. Furthermore, the hierarchy of LSTMs enables more complex representation of visual data, capturing information at different scales. To address these issues, we propose a hierarchical LSTM with adaptive attention (hLSTMat) approach for image and video captioning. Specifically, the proposed framework utilizes the spatial or temporal attention for selecting specific regions or frames to predict the related words, while the adaptive attention is for deciding whether to depend on the visual information or the language context information. Also, a hierarchical LSTMs is designed to simultaneously consider both low-level visual information and high-level language context information to support the caption generation. We initially design our hLSTMat for video captioning task. Then, we further refine it and apply it to image captioning task. To demonstrate the effectiveness of our proposed framework, we test our method on both video and image captioning tasks. Experimental results show that our approach achieves the state-of-the-art performance for most of the evaluation metrics on both tasks. The effect of important components is also well exploited in the ablation study. …

Dempsterian-Shaferian Belief Network google
Shenoy and Shafer {Shenoy:90} demonstrated that both for Dempster-Shafer Theory and probability theory there exists a possibility to calculate efficiently marginals of joint belief distributions (by so-called local computations) provided that the joint distribution can be decomposed (factorized) into a belief network. A number of algorithms exists for decomposition of probabilistic joint belief distribution into a bayesian (belief) network from data. For example Spirtes, Glymour and Schein{Spirtes:90b} formulated a Conjecture that a direct dependence test and a head-to-head meeting test would suffice to construe bayesian network from data in such a way that Pearl’s concept of d-separation {Geiger:90} applies. This paper is intended to transfer Spirtes, Glymour and Scheines {Spirtes:90b} approach onto the ground of the Dempster-Shafer Theory (DST). For this purpose, a frequentionistic interpretation of the DST developed in {Klopotek:93b} is exploited. A special notion of conditionality for DST is introduced and demonstrated to behave with respect to Pearl’s d-separation {Geiger:90} much the same way as conditional probability (though some differences like non-uniqueness are evident). Based on this, an algorithm analogous to that from {Spirtes:90b} is developed. The notion of a partially oriented graph (pog) is introduced and within this graph the notion of p-d-separation is defined. If direct dependence test and head-to-head meeting test are used to orient the pog then its p-d-separation is shown to be equivalent to the Pearl’s d-separation for any compatible dag. …