LSANet
Directly learning features from the point cloud has become an active research direction in 3D understanding. Existing learning-based methods usually construct local regions from the point cloud and extract the corresponding features using shared Multi-Layer Perceptron (MLP) and max pooling. However, most of these processes do not adequately take the spatial distribution of the point cloud into account, limiting the ability to perceive fine-grained patterns. We design a novel Local Spatial Attention (LSA) module to adaptively generate attention maps according to the spatial distribution of local regions. The feature learning process which integrates with these attention maps can effectively capture the local geometric structure. We further propose the Spatial Feature Extractor (SFE), which constructs a branch architecture, to aggregate the spatial information with associated features in each layer of the network better.The experiments show that our network, named LSANet, can achieve on par or better performance than the state-of-the-art methods when evaluating on the challenging benchmark datasets. The source code is available at https://…/LSANet. …
Entity Linking (EL)
In natural language processing, entity linking, named entity linking (NEL), named entity disambiguation (NED), named entity recognition and disambiguation (NERD) or named entity normalization (NEN) is the task of determining the identity of entities mentioned in text. For example, given the sentence ‘Paris is the capital of France’, the idea is to determine that ‘Paris’ refers to the city of Paris and not to Paris Hilton or any other entity that could be referred as ‘Paris’. NED is different from named entity recognition (NER) in that NER identifies the occurrence or mention of a named entity in text but it does not identify which specific entity it is. Entity linking requires a knowledge base containing the entities to which entity mentions can be linked. A popular choice for entity linking on open domain text are knowledge-bases based on Wikipedia, in which each page is regarded as a named entity. NED using Wikipedia entities has been also called wikification (see Wikify! an early entity linking system ). A knowledge base may also be induced automatically from training text or manually built. …
Contextual Position-Based Model (CPBM)
Accurate estimates of examination bias are crucial for unbiased learning-to-rank from implicit feedback in search engines and recommender systems, since they enable the use of Inverse Propensity Score (IPS) weighting techniques to address selection biases and missing data \citep{Joachims/etal/17a}. Unfortunately, existing examination-bias estimators \citep{Agarwal/etal/18c, wang2018position} are limited to the Position-Based Model (PBM) \citep{chuklin2015click}, where the examination bias may only depend on the rank of the document. To overcome this limitation, we propose a Contextual Position-Based Model (CPBM) where the examination bias may also depend on a context vector describing the query and the user. Furthermore, we propose an effective estimator for the CPBM based on intervention harvesting \citep{Agarwal/etal/18c}. A key feature of the estimator is that it does not require disruptive interventions but merely exploits natural variation resulting from the use of multiple historic ranking functions. Semi-synthetic experiments on the Yahoo Learning-To-Rank dataset demonstrate the superior effectiveness of the new approach. …
Parameter-Free Online Learning
We introduce an efficient algorithmic framework for model selection in online learning, also known as parameter-free online learning. Departing from previous work, which has focused on highly structured function classes such as nested balls in Hilbert space, we propose a generic meta-algorithm framework that achieves online model selection oracle inequalities under minimal structural assumptions. We give the first computationally efficient parameter-free algorithms that work in arbitrary Banach spaces under mild smoothness assumptions; previous results applied only to Hilbert spaces. We further derive new oracle inequalities for matrix classes, non-nested convex sets, and $\mathbb{R}^{d}$ with generic regularizers. Finally, we generalize these results by providing oracle inequalities for arbitrary non-linear classes in the online supervised learning model. These results are all derived through a unified meta-algorithm scheme using a novel ‘multi-scale’ algorithm for prediction with expert advice based on random playout, which may be of independent interest. …
If you did not already know
24 Tuesday Aug 2021
Posted What is ...
in