Discrete Statistical Model
A discrete statistical model is a subset of a probability simplex. Its maximum likelihood estimator (MLE) is a retraction from that simplex onto the model. …
Deep Poisson-Gamma Dynamical System (DPGDS)
We develop deep Poisson-gamma dynamical systems (DPGDS) to model sequentially observed multivariate count data, improving previously proposed models by not only mining deep hierarchical latent structure from the data, but also capturing both first-order and long-range temporal dependencies. Using sophisticated but simple-to-implement data augmentation techniques, we derived closed-form Gibbs sampling update equations by first backward and upward propagating auxiliary latent counts, and then forward and downward sampling latent variables. Moreover, we develop stochastic gradient MCMC inference that is scalable to very long multivariate count time series. Experiments on both synthetic and a variety of real-world data demonstrate that the proposed model not only has excellent predictive performance, but also provides highly interpretable multilayer latent structure to represent hierarchical and temporal information propagation. …
ADCrowdNet
We propose an attention-injective deformable convolutional network called ADCrowdNet for crowd understanding that can address the accuracy degradation problem of highly congested noisy scenes. ADCrowdNet contains two concatenated networks. An attention-aware network called Attention Map Generator (AMG) first detects crowd regions in images and computes the congestion degree of these regions. Based on detected crowd regions and congestion priors, a multi-scale deformable network called Density Map Estimator (DME) then generates high-quality density maps. With the attention-aware training scheme and multi-scale deformable convolutional scheme, the proposed ADCrowdNet achieves the capability of being more effective to capture the crowd features and more resistant to various noises. We have evaluated our method on four popular crowd counting datasets (ShanghaiTech, UCF_CC_50, WorldEXPO’10, and UCSD) and an extra vehicle counting dataset TRANCOS, our approach overwhelmingly beats existing approaches on all of these datasets. …
VIsual Tracking via Adversarial Learning (VITAL)
The tracking-by-detection framework consists of two stages, i.e., drawing samples around the target object in the first stage and classifying each sample as the target object or as background in the second stage. The performance of existing trackers using deep classification networks is limited by two aspects. First, the positive samples in each frame are highly spatially overlapped, and they fail to capture rich appearance variations. Second, there exists extreme class imbalance between positive and negative samples. This paper presents the VITAL algorithm to address these two problems via adversarial learning. To augment positive samples, we use a generative network to randomly generate masks, which are applied to adaptively dropout input features to capture a variety of appearance changes. With the use of adversarial learning, our network identifies the mask that maintains the most robust features of the target objects over a long temporal span. In addition, to handle the issue of class imbalance, we propose a high-order cost sensitive loss to decrease the effect of easy negative samples to facilitate training the classification network. Extensive experiments on benchmark datasets demonstrate that the proposed tracker performs favorably against state-of-the-art approaches. …
If you did not already know
21 Saturday Aug 2021
Posted What is ...
in