Cogniculture google
Research in Artificial Intelligence is breaking technology barriers every day. New algorithms and high performance computing are making things possible which we could only have imagined earlier. Though the enhancements in AI are making life easier for human beings day by day, there is constant fear that AI based systems will pose a threat to humanity. People in AI community have diverse set of opinions regarding the pros and cons of AI mimicking human behavior. Instead of worrying about AI advancements, we propose a novel idea of cognitive agents, including both human and machines, living together in a complex adaptive ecosystem, collaborating on human computation for producing essential social goods while promoting sustenance, survival and evolution of the agents’ life cycle. We highlight several research challenges and technology barriers in achieving this goal. We propose a governance mechanism around this ecosystem to ensure ethical behaviors of all cognitive agents. Along with a novel set of use-cases of Cogniculture, we discuss the road map ahead for this journey. …

Path Correlation Data google
A communication network can be modeled as a directed connected graph with edge weights that characterize performance metrics such as loss and delay. Network tomography aims to infer these edge weights from their pathwise versions measured on a set of intersecting paths between a subset of boundary vertices, and even the underlying graph when this is not known. In particular, temporal correlations between path metrics have been used infer composite weights on the subpath formed by the path intersection. We call these subpath weights the Path Correlation Data. In this paper we ask the following question: when can the underlying weighted graph be recovered knowing only the boundary vertices and the Path Correlation Data? We establish necessary and sufficient conditions for a graph to be reconstructible from this information, and describe an algorithm to perform the reconstruction. Subject to our conditions, the result applies to directed graphs with asymmetric edge weights, and accommodates paths arising from asymmetric routing in the underlying communication network. We also describe the relationship between the graph produced by our algorithm and the true graph in the case that our conditions are not satisfied. …

Online Hyper-parameter Learning for Auto-Augmentation (OHL-Auto-Aug) google
Data augmentation is critical to the success of modern deep learning techniques. In this paper, we propose Online Hyper-parameter Learning for Auto-Augmentation (OHL-Auto-Aug), an economical solution that learns the augmentation policy distribution along with network training. Unlike previous methods on auto-augmentation that search augmentation strategies in an offline manner, our method formulates the augmentation policy as a parameterized probability distribution, thus allowing its parameters to be optimized jointly with network parameters. Our proposed OHL-Auto-Aug eliminates the need of re-training and dramatically reduces the cost of the overall search process, while establishes significantly accuracy improvements over baseline models. On both CIFAR-10 and ImageNet, our method achieves remarkable on search accuracy, 60x faster on CIFAR-10 and 24x faster on ImageNet, while maintaining competitive accuracies. …

Renyi Entropy Actor-Critic (RAC) google
We propose a new policy iteration theory as an important extension of soft policy iteration and Soft Actor-Critic (SAC), one of the most efficient model free algorithms for deep reinforcement learning. Supported by the new theory, arbitrary entropy measures that generalize Shannon entropy, such as Tsallis entropy and Renyi entropy, can be utilized to properly randomize action selection while fulfilling the goal of maximizing expected long-term rewards. Our theory gives birth to two new algorithms, i.e., Tsallis entropy Actor-Critic (TAC) and Renyi entropy Actor-Critic (RAC). Theoretical analysis shows that these algorithms can be more effective than SAC. Moreover, they pave the way for us to develop a new Ensemble Actor-Critic (EAC) algorithm in this paper that features the use of a bootstrap mechanism for deep environment exploration as well as a new value-function based mechanism for high-level action selection. Empirically we show that TAC, RAC and EAC can achieve state-of-the-art performance on a range of benchmark control tasks, outperforming SAC and several cutting-edge learning algorithms in terms of both sample efficiency and effectiveness. …