Tamed Cross Entropy (TCE) google
We present the Tamed Cross Entropy (TCE) loss function, a robust derivative of the standard Cross Entropy (CE) loss used in deep learning for classification tasks. However, unlike other robust losses, the TCE loss is designed to exhibit the same training properties than the CE loss in noiseless scenarios. Therefore, the TCE loss requires no modification on the training regime compared to the CE loss and, in consequence, can be applied in all applications where the CE loss is currently used. We evaluate the TCE loss using the ResNet architecture on four image datasets that we artificially contaminated with various levels of label noise. The TCE loss outperforms the CE loss in every tested scenario. …

Attentive Long Short-Term Preference (ALSTP) google
E-commerce users may expect different products even for the same query, due to their diverse personal preferences. It is well-known that there are two types of preferences: long-term ones and short-term ones. The former refers to user’ inherent purchasing bias and evolves slowly. By contrast, the latter reflects users’ purchasing inclination in a relatively short period. They both affect users’ current purchasing intentions. However, few research efforts have been dedicated to jointly model them for the personalized product search. To this end, we propose a novel Attentive Long Short-Term Preference model, dubbed as ALSTP, for personalized product search. Our model adopts the neural networks approach to learn and integrate the long- and short-term user preferences with the current query for the personalized product search. In particular, two attention networks are designed to distinguish which factors in the short-term as well as long-term user preferences are more relevant to the current query. This unique design enables our model to capture users’ current search intentions more accurately. Our work is the first to apply attention mechanisms to integrate both long- and short-term user preferences with the given query for the personalized search. Extensive experiments over four Amazon product datasets show that our model significantly outperforms several state-of-the-art product search methods in terms of different evaluation metrics. …

Convolutional Neural Network with Alternately Updated Clique (CliqueNet) google
Improving information flow in deep networks helps to ease the training difficulties and utilize parameters more efficiently. Here we propose a new convolutional neural network architecture with alternately updated clique (CliqueNet). In contrast to prior networks, there are both forward and backward connections between any two layers in the same block. The layers are constructed as a loop and are updated alternately. The CliqueNet has some unique properties. For each layer, it is both the input and output of any other layer in the same block, so that the information flow among layers is maximized. During propagation, the newly updated layers are concatenated to re-update previously updated layer, and parameters are reused for multiple times. This recurrent feedback structure is able to bring higher level visual information back to refine low-level filters and achieve spatial attention. We analyze the features generated at different stages and observe that using refined features leads to a better result. We adopt a multi-scale feature strategy that effectively avoids the progressive growth of parameters. Experiments on image recognition datasets including CIFAR-10, CIFAR-100, SVHN and ImageNet show that our proposed models achieve the state-of-the-art performance with fewer parameters. …

Weaver google
We introduce a new distributed graph store, called Weaver, which enables efficient, transactional graph analyses as well as strictly serializable read-write transactions on dynamic graphs. The key insight that enables Weaver to combine strict serializability with horizontal scalability and high performance is a novel request ordering mechanism called refinable timestamps. This technique couples coarse-grained vector timestamps with a fine-grained timeline oracle to pay the overhead of strong consistency only when needed. …