SingleGAN google
Image translation is a burgeoning field in computer vision where the goal is to learn the mapping between an input image and an output image. However, most recent methods require multiple generators for modeling different domain mappings, which are inefficient and ineffective on some multi-domain image translation tasks. In this paper, we propose a novel method, SingleGAN, to perform multi-domain image-to-image translations with a single generator. We introduce the domain code to explicitly control the different generative tasks and integrate multiple optimization goals to ensure the translation. Experimental results on several unpaired datasets show superior performance of our model in translation between two domains. Besides, we explore variants of SingleGAN for different tasks, including one-to-many domain translation, many-to-many domain translation and one-to-one domain translation with multimodality. The extended experiments show the universality and extensibility of our model. …

SinGAN google
We introduce SinGAN, an unconditional generative model that can be learned from a single natural image. Our model is trained to capture the internal distribution of patches within the image, and is then able to generate high quality, diverse samples that carry the same visual content as the image. SinGAN contains a pyramid of fully convolutional GANs, each responsible for learning the patch distribution at a different scale of the image. This allows generating new samples of arbitrary size and aspect ratio, that have significant variability, yet maintain both the global structure and the fine textures of the training image. In contrast to previous single image GAN schemes, our approach is not limited to texture images, and is not conditional (i.e. it generates samples from noise). User studies confirm that the generated samples are commonly confused to be real images. We illustrate the utility of SinGAN in a wide range of image manipulation tasks. …

coLaboratory Project google
coLaboratory Project, a new tool for data science and analysis, designed to make collaborating on data easier. coLaboratory merges successful open source products with Google technologies, enabling multiple people to collaborate directly through simultaneous access and analysis of data. This provides a big improvement over ad-hoc workflows involving emailing documents back and forth. …

Subject-Verb-Object Semantic Suffix Tree Clustering (SVOSSTC) google
In recent years, situation awareness has been recognised as a critical part of effective decision making, in particular for crisis management. One way to extract value and allow for better situation awareness is to develop a system capable of analysing a dataset of multiple posts, and clustering consistent posts into different views or stories (or, world views). However, this can be challenging as it requires an understanding of the data, including determining what is consistent data, and what data corroborates other data. Attempting to address these problems, this article proposes Subject-Verb-Object Semantic Suffix Tree Clustering (SVOSSTC) and a system to support it, with a special focus on Twitter content. The novelty and value of SVOSSTC is its emphasis on utilising the Subject-Verb-Object (SVO) typology in order to construct semantically consistent world views, in which individuals—particularly those involved in crisis response—might achieve an enhanced picture of a situation from social media data. To evaluate our system and its ability to provide enhanced situation awareness, we tested it against existing approaches, including human data analysis, using a variety of real-world scenarios. The results indicated a noteworthy degree of evidence (e.g., in cluster granularity and meaningfulness) to affirm the suitability and rigour of our approach. Moreover, these results highlight this article’s proposals as innovative and practical system contributions to the research field. …