Regularization Approach for Instance-Based Superset Label Learning (RegISL)
Different from the traditional supervised learning in which each training example has only one explicit label, superset label learning (SLL) refers to the problem that a training example can be associated with a set of candidate labels, and only one of them is correct. Existing SLL methods are either regularization-based or instance-based, and the latter of which has achieved state-of-the-art performance. This is because the latest instance-based methods contain an explicit disambiguation operation that accurately picks up the groundtruth label of each training example from its ambiguous candidate labels. However, such disambiguation operation does not fully consider the mutually exclusive relationship among different candidate labels, so the disambiguated labels are usually generated in a nondiscriminative way, which is unfavorable for the instance-based methods to obtain satisfactory performance. To address this defect, we develop a novel regularization approach for instance-based superset label (RegISL) learning so that our instance-based method also inherits the good discriminative ability possessed by the regularization scheme. Specifically, we employ a graph to represent the training set, and require the examples that are adjacent on the graph to obtain similar labels. More importantly, a discrimination term is proposed to enlarge the gap of values between possible labels and unlikely labels for every training example. As a result, the intrinsic constraints among different candidate labels are deployed, and the disambiguated labels generated by RegISL are more discriminative and accurate than those output by existing instance-based algorithms. The experimental results on various tasks convincingly demonstrate the superiority of our RegISL to other typical SLL methods in terms of both training accuracy and test accuracy. …
Programming Word Problem
A programming word problem is a problem written in natural language, which can be solved using an algorithm or a program. …
Semidefinite Program (SDP)
We present a novel analysis of semidefinite programs (SDPs) with positive duality gaps, i.e., different optimal values in the primal and dual problems. These SDPs are considered extremely pathological, they are often unsolvable, and they also serve as models of more general pathological convex programs. We first characterize two variable SDPs with positive gaps: we transform them into a standard form which makes the positive gap easy to recognize. The transformation is very simple, as it mostly uses elementary row operations coming from Gaussian elimination. We next show that the two variable case sheds light on larger SDPs with positive gaps: we present SDPs in any dimension in which the positive gap is certified by the same structure as in the two variable case. We analyze an important parameter, the {\em singularity degree} of the duals of our SDPs and show that it is the largest that can result in a positive gap. We complete the paper by generating a library of difficult SDPs with positive gaps (some of these SDPs have only two variables), and a computational study. …
alpha-Rank
We introduce {\alpha}-Rank, a principled evolutionary dynamics methodology, for the evaluation and ranking of agents in large-scale multi-agent interactions, grounded in a novel dynamical game-theoretic solution concept called Markov-Conley chains (MCCs). The approach leverages continuous-time and discrete-time evolutionary dynamical systems applied to empirical games, and scales tractably in the number of agents, in the type of interactions (beyond dyadic), and the type of empirical games (symmetric and asymmetric). Current models are fundamentally limited in one or more of these dimensions, and are not guaranteed to converge to the desired game-theoretic solution concept (typically the Nash equilibrium). {\alpha}-Rank automatically provides a ranking over the set of agents under evaluation and provides insights into their strengths, weaknesses, and long-term dynamics in terms of basins of attraction and sink components. This is a direct consequence of our new model’s direct correspondence to the dynamical MCC solution concept when its ranking-intensity parameter, {\alpha}, is chosen to be large, which exactly forms the basis of {\alpha}-Rank. In contrast to the Nash equilibrium, which is a static solution concept based solely on fixed points, MCCs are a dynamical solution concept based on the Markov chain formalism, Conley’s Fundamental Theorem of Dynamical Systems, and the core ingredients of dynamical systems: fixed points, recurrent sets, periodic orbits, and limit cycles. Our {\alpha}-Rank method runs in polynomial time with respect to the total number of pure strategy profiles, whereas computing a Nash equilibrium for a general-sum game is known to be intractable. We introduce mathematical proofs that reveal the formal underpinnings of the {\alpha}-Rank methodology. We illustrate the method in canonical games and in AlphaGo, AlphaZero, MuJoCo Soccer, and Poker. …
If you did not already know
07 Saturday Aug 2021
Posted What is ...
in