Data Archaeology
Data archaeology refers to the art and science of recovering computer data encoded and/or encrypted in now obsolete media or formats. Data archaeology can also refer to recovering information from damaged electronic formats after natural or man made disasters. …
UR-FUNNY
Humor is a unique and creative communicative behavior displayed during social interactions. It is produced in a multimodal manner, through the usage of words (text), gestures (vision) and prosodic cues (acoustic). Understanding humor from these three modalities falls within boundaries of multimodal language; a recent research trend in natural language processing that models natural language as it happens in face-to-face communication. Although humor detection is an established research area in NLP, in a multimodal context it is an understudied area. This paper presents a diverse multimodal dataset, called UR-FUNNY, to open the door to understanding multimodal language used in expressing humor. The dataset and accompanying studies, present a framework in multimodal humor detection for the natural language processing community. UR-FUNNY is publicly available for research. …
Firebreak Decision Problem
Suppose we have a network that is represented by a graph $G$. Potentially a fire (or other type of contagion) might erupt at some vertex of $G$. We are able to respond to this outbreak by establishing a firebreak at $k$ other vertices of $G$, so that the fire cannot pass through these fortified vertices. The question that now arises is which $k$ vertices will result in the greatest number of vertices being saved from the fire, assuming that the fire will spread to every vertex that is not fully behind the $k$ vertices of the firebreak. This is the essence of the Firebreak decision problem. …
Stochastic Substitute Training
It has been shown that adversaries can craft example inputs to neural networks which are similar to legitimate inputs but have been created to purposely cause the neural network to misclassify the input. These adversarial examples are crafted, for example, by calculating gradients of a carefully defined loss function with respect to the input. As a countermeasure, some researchers have tried to design robust models by blocking or obfuscating gradients, even in white-box settings. Another line of research proposes introducing a separate detector to attempt to detect adversarial examples. This approach also makes use of gradient obfuscation techniques, for example, to prevent the adversary from trying to fool the detector. In this paper, we introduce stochastic substitute training, a gray-box approach that can craft adversarial examples for defenses which obfuscate gradients. For those defenses that have tried to make models more robust, with our technique, an adversary can craft adversarial examples with no knowledge of the defense. For defenses that attempt to detect the adversarial examples, with our technique, an adversary only needs very limited information about the defense to craft adversarial examples. We demonstrate our technique by applying it against two defenses which make models more robust and two defenses which detect adversarial examples. …
If you did not already know
28 Wednesday Jul 2021
Posted What is ...
in