AutoFD
We study the problem of discovering functional dependencies (FD) from a noisy dataset. We focus on FDs that correspond to statistical dependencies in a dataset and draw connections between FD discovery and structure learning in probabilistic graphical models. We show that discovering FDs from a noisy dataset is equivalent to learning the structure of a graphical model over binary random variables, where each random variable corresponds to a functional of the dataset attributes. We build upon this observation to introduce AutoFD a conceptually simple framework in which learning functional dependencies corresponds to solving a sparse regression problem. We show that our methods can recover true functional dependencies across a diverse array of real-world and synthetic datasets, even in the presence of noisy or missing data. We find that AutoFD scales to large data instances with millions of tuples and hundreds of attributes while it yields an average F1 improvement of 2 times against state-of-the-art FD discovery methods. …
Sequential Attention Relational Network (SARN)
This paper proposes an attention module augmented relational network called SARN (Sequential Attention Relational Network) that can carry out relational reasoning by extracting reference objects and making efficient pairing between objects. SARN greatly reduces the computational and memory requirements of the relational network, which computes all object pairs. It also shows high accuracy on the Sort-of-CLEVR dataset compared to other models, especially on relational questions. …
Debagging
It is easy to convert a sentence into a bag of words, but it is much harder to convert a bag of words into a meaningful sentence. We name the latter the debagging problem. …
Actional-Structural Graph Convolution Network (AS-GCN)
Action recognition with skeleton data has recently attracted much attention in computer vision. Previous studies are mostly based on fixed skeleton graphs, only capturing local physical dependencies among joints, which may miss implicit joint correlations. To capture richer dependencies, we introduce an encoder-decoder structure, called A-link inference module, to capture action-specific latent dependencies, i.e. actional links, directly from actions. We also extend the existing skeleton graphs to represent higher-order dependencies, i.e. structural links. Combing the two types of links into a generalized skeleton graph, we further propose the actional-structural graph convolution network (AS-GCN), which stacks actional-structural graph convolution and temporal convolution as a basic building block, to learn both spatial and temporal features for action recognition. A future pose prediction head is added in parallel to the recognition head to help capture more detailed action patterns through self-supervision. We validate AS-GCN in action recognition using two skeleton data sets, NTU-RGB+D and Kinetics. The proposed AS-GCN achieves consistently large improvement compared to the state-of-the-art methods. As a side product, AS-GCN also shows promising results for future pose prediction. …
If you did not already know
26 Monday Jul 2021
Posted What is ...
in