Contour-Aware Informative Aggregation Network (CIA-Net)
Accurate segmenting nuclei instances is a crucial step in computer-aided image analysis to extract rich features for cellular estimation and following diagnosis as well as treatment. While it still remains challenging because the wide existence of nuclei clusters, along with the large morphological variances among different organs make nuclei instance segmentation susceptible to over-/under-segmentation. Additionally, the inevitably subjective annotating and mislabeling prevent the network learning from reliable samples and eventually reduce the generalization capability for robustly segmenting unseen organ nuclei. To address these issues, we propose a novel deep neural network, namely Contour-aware Informative Aggregation Network (CIA-Net) with multi-level information aggregation module between two task-specific decoders. Rather than independent decoders, it leverages the merit of spatial and texture dependencies between nuclei and contour by bi-directionally aggregating task-specific features. Furthermore, we proposed a novel smooth truncated loss that modulates losses to reduce the perturbation from outliers. Consequently, the network can focus on learning from reliable and informative samples, which inherently improves the generalization capability. Experiments on the 2018 MICCAI challenge of Multi-Organ-Nuclei-Segmentation validated the effectiveness of our proposed method, surpassing all the other 35 competitive teams by a significant margin. …
Parenting
Autonomous agents trained via reinforcement learning present numerous safety concerns: reward hacking, negative side effects, and unsafe exploration, among others. In the context of near-future autonomous agents, operating in environments where humans understand the existing dangers, human involvement in the learning process has proved a promising approach to AI Safety. Here we demonstrate that a precise framework for learning from human input, loosely inspired by the way humans parent children, solves a broad class of safety problems in this context. We show that our Parenting algorithm solves these problems in the relevant AI Safety gridworlds of Leike et al. (2017), that an agent can learn to outperform its parent as it ‘matures’, and that policies learnt through Parenting are generalisable to new environments. …
DUal view Point deep Learning architecture for time series classificatiOn (DuPLO)
Nowadays, modern Earth Observation systems continuously generate huge amounts of data. A notable example is represented by the Sentinel-2 mission, which provides images at high spatial resolution (up to 10m) with high temporal revisit period (every 5 days), which can be organized in Satellite Image Time Series (SITS). While the use of SITS has been proved to be beneficial in the context of Land Use/Land Cover (LULC) map generation, unfortunately, machine learning approaches commonly leveraged in remote sensing field fail to take advantage of spatio-temporal dependencies present in such data. Recently, new generation deep learning methods allowed to significantly advance research in this field. These approaches have generally focused on a single type of neural network, i.e., Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), which model different but complementary information: spatial autocorrelation (CNNs) and temporal dependencies (RNNs). In this work, we propose the first deep learning architecture for the analysis of SITS data, namely \method{} (DUal view Point deep Learning architecture for time series classificatiOn), that combines Convolutional and Recurrent neural networks to exploit their complementarity. Our hypothesis is that, since CNNs and RNNs capture different aspects of the data, a combination of both models would produce a more diverse and complete representation of the information for the underlying land cover classification task. Experiments carried out on two study sites characterized by different land cover characteristics (i.e., the \textit{Gard} site in France and the \textit{Reunion Island} in the Indian Ocean), demonstrate the significance of our proposal. …
Knockoff Net
Machine Learning (ML) models are increasingly deployed in the wild to perform a wide range of tasks. In this work, we ask to what extent can an adversary steal functionality of such ‘victim’ models based solely on blackbox interactions: image in, predictions out. In contrast to prior work, we present an adversary lacking knowledge of train/test data used by the model, its internals, and semantics over model outputs. We formulate model functionality stealing as a two-step approach: (i) querying a set of input images to the blackbox model to obtain predictions; and (ii) training a ‘knockoff’ with queried image-prediction pairs. We make multiple remarkable observations: (a) querying random images from a different distribution than that of the blackbox training data results in a well-performing knockoff; (b) this is possible even when the knockoff is represented using a different architecture; and (c) our reinforcement learning approach additionally improves query sample efficiency in certain settings and provides performance gains. We validate model functionality stealing on a range of datasets and tasks, as well as on a popular image analysis API where we create a reasonable knockoff for as little as $30. …
If you did not already know
21 Wednesday Jul 2021
Posted What is ...
in