FermiNet
The tremendous potential exhibited by deep learning is often offset by architectural and computational complexity, making widespread deployment a challenge for edge scenarios such as mobile and other consumer devices. To tackle this challenge, we explore the following idea: Can we learn generative machines to automatically generate deep neural networks with efficient network architectures? In this study, we introduce the idea of generative synthesis, which is premised on the intricate interplay between a generator-inquisitor pair that work in tandem to garner insights and learn to generate highly efficient deep neural networks that best satisfies operational requirements. What is most interesting is that, once a generator has been learned through generative synthesis, it can be used to generate not just one but a large variety of different, unique highly efficient deep neural networks that satisfy operational requirements. Experimental results for image classification, semantic segmentation, and object detection tasks illustrate the efficacy of generative synthesis in producing generators that automatically generate highly efficient deep neural networks (which we nickname FermiNets) with higher model efficiency and lower computational costs (reaching >10x more efficient and fewer multiply-accumulate operations than several tested state-of-the-art networks), as well as higher energy efficiency (reaching >4x improvements in image inferences per joule consumed on a Nvidia Tegra X2 mobile processor). As such, generative synthesis can be a powerful, generalized approach for accelerating and improving the building of deep neural networks for on-device edge scenarios. …
Centered Initial Attack (CIA)
During the last years, a remarkable breakthrough has been made in AI domain thanks to artificial deep neural networks that achieved a great success in many machine learning tasks in computer vision, natural language processing, speech recognition, malware detection and so on. However, they are highly vulnerable to easily crafted adversarial examples. Many investigations have pointed out this fact and different approaches have been proposed to generate attacks while adding a limited perturbation to the original data. The most robust known method so far is the so called C&W attack [1]. Nonetheless, a countermeasure known as feature squeezing coupled with ensemble defense showed that most of these attacks can be destroyed [6]. In this paper, we present a new method we call Centered Initial Attack (CIA) whose advantage is twofold : first, it insures by construction the maximum perturbation to be smaller than a threshold fixed beforehand, without the clipping process that degrades the quality of attacks. Second, it is robust against recently introduced defenses such as feature squeezing, JPEG encoding and even against a voting ensemble of defenses. While its application is not limited to images, we illustrate this using five of the current best classifiers on ImageNet dataset among which two are adversarialy retrained on purpose to be robust against attacks. With a fixed maximum perturbation of only 1.5% on any pixel, around 80% of attacks (targeted) fool the voting ensemble defense and nearly 100% when the perturbation is only 6%. While this shows how it is difficult to defend against CIA attacks, the last section of the paper gives some guidelines to limit their impact. …
RadViz3D
This paper develops methodology for 3D radial visualization of high-dimensional datasets. Our display engine is called RadViz3D and extends the classic RadViz that visualizes multivariate data in the 2D plane by mapping every record to a point inside the unit circle. The classic RadViz display has equally-spaced anchor points on the unit circle, with each of them associated with an attribute or feature of the dataset. RadViz3D obtains equi-spaced anchor points exactly for the five Platonic solids and approximately for the other cases via a Fibonacci grid. We show that distributing anchor points at least approximately uniformly on the 3D unit sphere provides a better visualization than in 2D. We also propose a Max-Ratio Projection (MRP) method that utilizes the group information in high dimensions to provide distinctive lower-dimensional projections that are then displayed using Radviz3D. Our methodology is extended to datasets with discrete and mixed features where a generalized distributional transform is used in conjuction with copula models before applying MRP and RadViz3D visualization. …
Backward Projection
Dimensionality reduction is a common method for analyzing and visualizing high-dimensional data. However, reasoning dynamically about the results of a dimensionality reduction is difficult. Dimensionality-reduction algorithms use complex optimizations to reduce the number of dimensions of a dataset, but these new dimensions often lack a clear relation to the initial data dimensions, thus making them difficult to interpret. Here we propose a visual interaction framework to improve dimensionality-reduction based exploratory data analysis. We introduce two interaction techniques, forward projection and backward projection, for dynamically reasoning about dimensionally reduced data. We also contribute two visualization techniques, prolines and feasibility maps, to facilitate the effective use of the proposed interactions. We apply our framework to PCA and autoencoder-based dimensionality reductions. Through data-exploration examples, we demonstrate how our visual interactions can improve the use of dimensionality reduction in exploratory data analysis. …
If you did not already know
20 Tuesday Jul 2021
Posted What is ...
in