Projected Data Assimilation google
We introduce a framework for Data Assimilation (DA) in which the data is split into multiple sets corresponding to low-rank projections of the state space. Algorithms are developed that assimilate some or all of the projected data, including an algorithm compatible with any generic DA method. The major application explored here is PF-AUS, a new implementation of Assimilation in the Unstable Subspace (AUS) for Particle Filters. The PF-AUS implementation assimilates highly informative but low-dimensional observations. In the context of particle filtering, the projected approach mitigates the collapse of particle ensembles in high dimensional DA problems while preserving as much relevant information as possible, as the unstable and neutral modes correspond to the most uncertain model predictions. In particular we formulate and numerically implement PF-AUS with the optimal proposal and compare to the standard optimal proposal and to the Local Ensemble Transform Kalman Filter. …

PullNet google
We consider open-domain queston answering (QA) where answers are drawn from either a corpus, a knowledge base (KB), or a combination of both of these. We focus on a setting in which a corpus is supplemented with a large but incomplete KB, and on questions that require non-trivial (e.g., “multi-hop”) reasoning. We describe PullNet, an integrated framework for (1) learning what to retrieve (from the KB and/or corpus) and (2) reasoning with this heterogeneous information to find the best answer. PullNet uses an {iterative} process to construct a question-specific subgraph that contains information relevant to the question. In each iteration, a graph convolutional network (graph CNN) is used to identify subgraph nodes that should be expanded using retrieval (or “pull”) operations on the corpus and/or KB. After the subgraph is complete, a similar graph CNN is used to extract the answer from the subgraph. This retrieve-and-reason process allows us to answer multi-hop questions using large KBs and corpora. PullNet is weakly supervised, requiring question-answer pairs but not gold inference paths. Experimentally PullNet improves over the prior state-of-the art, and in the setting where a corpus is used with incomplete KB these improvements are often dramatic. PullNet is also often superior to prior systems in a KB-only setting or a text-only setting. …

Multi-Agent Path Finding google
Explanation of the hot topic ‘multi-agent path finding’. …

Net2Vec google
In an effort to understand the meaning of the intermediate representations captured by deep networks, recent papers have tried to associate specific semantic concepts to individual neural network filter responses, where interesting correlations are often found, largely by focusing on extremal filter responses. In this paper, we show that this approach can favor easy-to-interpret cases that are not necessarily representative of the average behavior of a representation. A more realistic but harder-to-study hypothesis is that semantic representations are distributed, and thus filters must be studied in conjunction. In order to investigate this idea while enabling systematic visualization and quantification of multiple filter responses, we introduce the Net2Vec framework, in which semantic concepts are mapped to vectorial embeddings based on corresponding filter responses. By studying such embeddings, we are able to show that 1., in most cases, multiple filters are required to code for a concept, that 2., often filters are not concept specific and help encode multiple concepts, and that 3., compared to single filter activations, filter embeddings are able to better characterize the meaning of a representation and its relationship to other concepts. …