Wildly-Unsupervised Domain Adaptation (WUDA)
Unsupervised domain adaptation (UDA) trains with clean labeled data in source domain and unlabeled data in target domain to classify target-domain data. However, in real-world scenarios, it is hard to acquire fully-clean labeled data in source domain due to the expensive labeling cost. This brings us a new but practical adaptation called wildly-unsupervised domain adaptation (WUDA), which aims to transfer knowledge from noisy labeled data in source domain to unlabeled data in target domain. To tackle the WUDA, we present a robust one-step approach called Butterfly, which trains four networks. Specifically, two networks are jointly trained on noisy labeled data in source domain and pseudo-labeled data in target domain (i.e., data in mixture domain). Meanwhile, the other two networks are trained on pseudo-labeled data in target domain. By using dual-checking principle, Butterfly can obtain high-quality target-specific representations. We conduct experiments to demonstrate that Butterfly significantly outperforms other baselines on simulated and real-world WUDA tasks in most cases. …
SALSA-TEXT
Inspired by the success of self attention mechanism and Transformer architecture in sequence transduction and image generation applications, we propose novel self attention-based architectures to improve the performance of adversarial latent code- based schemes in text generation. Adversarial latent code-based text generation has recently gained a lot of attention due to their promising results. In this paper, we take a step to fortify the architectures used in these setups, specifically AAE and ARAE. We benchmark two latent code-based methods (AAE and ARAE) designed based on adversarial setups. In our experiments, the Google sentence compression dataset is utilized to compare our method with these methods using various objective and subjective measures. The experiments demonstrate the proposed (self) attention-based models outperform the state-of-the-art in adversarial code-based text generation. …
Collage Inference
MLaaS (ML-as-a-Service) offerings by cloud computing platforms are becoming increasingly popular these days. Pre-trained machine learning models are deployed on the cloud to support prediction based applications and services. For achieving higher throughput, incoming requests are served by running multiple replicas of the model on different machines concurrently. Incidence of straggler nodes in distributed inference is a significant concern since it can increase inference latency, violate SLOs of the service. In this paper, we propose a novel coded inference model to deal with stragglers in distributed image classification. We propose modified single shot object detection models, Collage-CNN models, to provide necessary resilience efficiently. A Collage-CNN model takes collage images formed by combining multiple images as its input and performs multi-image classification in one shot. We generate custom training collages using images from standard image classification datasets and train the model to achieve high classification accuracy. Deploying the Collage-CNN models in the cloud, we demonstrate that the 99th percentile latency can be reduced by 1.45X to 2.46X compared to replication based approaches and without compromising prediction accuracy. …
Convolutional Gaussian Processes
We present a practical way of introducing convolutional structure into Gaussian processes, making them more suited to high-dimensional inputs like images. The main contribution of our work is the construction of an inter-domain inducing point approximation that is well-tailored to the convolutional kernel. This allows us to gain the generalisation benefit of a convolutional kernel, together with fast but accurate posterior inference. We investigate several variations of the convolutional kernel, and apply it to MNIST and CIFAR-10, which have both been known to be challenging for Gaussian processes. We also show how the marginal likelihood can be used to find an optimal weighting between convolutional and RBF kernels to further improve performance. We hope that this illustration of the usefulness of a marginal likelihood will help automate discovering architectures in larger models. …
If you did not already know
13 Tuesday Jul 2021
Posted What is ...
in