Light Dual-Task Neural Network (LDTNet)
Single-image dehazing is a challenging problem due to its ill-posed nature. Existing methods rely on a suboptimal two-step approach, where an intermediate product like a depth map is estimated, based on which the haze-free image is subsequently generated using an artificial prior formula. In this paper, we propose a light dual-task Neural Network called LDTNet that restores the haze-free image in one shot. We use transmission map estimation as an auxiliary task to assist the main task, haze removal, in feature extraction and to enhance the generalization of the network. In LDTNet, the haze-free image and the transmission map are produced simultaneously. As a result, the artificial prior is reduced to the smallest extent. Extensive experiments demonstrate that our algorithm achieves superior performance against the state-of-the-art methods on both synthetic and real-world images. …
Multiple-Kernel Dictionary Learning (MKD)
There exist many approaches for description and recognition of unseen classes in datasets. Nevertheless, it becomes a challenging problem when we deal with multivariate time-series (MTS) (e.g., motion data), where we cannot apply the vectorial algorithms directly to the inputs. In this work, we propose a novel multiple-kernel dictionary learning (MKD) which learns semantic attributes based on specific combinations of MTS dimensions in the feature space. Hence, MKD can fully/partially reconstructs the unseen classes based on the training data (seen classes). Furthermore, we obtain sparse encodings for unseen classes based on the learned MKD attributes, and upon which we propose a simple but effective incremental clustering algorithm to categorize the unseen MTS classes in an unsupervised way. According to the empirical evaluation of our MKD framework on real benchmarks, it provides an interpretable reconstruction of unseen MTS data as well as a high performance regarding their online clustering. …
Model Based Machine Learning (MBML)
Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation formodel-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. …
Model-Based Active EXploration (MAX)
Efficient exploration is an unsolved problem in Reinforcement Learning. We introduce Model-Based Active eXploration (MAX), an algorithm that actively explores the environment. It minimizes data required to comprehensively model the environment by planning to observe novel events, instead of merely reacting to novelty encountered by chance. Non-stationarity induced by traditional exploration bonus techniques is avoided by constructing fresh exploration policies only at time of action. In semi-random toy environments where directed exploration is critical to make progress, our algorithm is at least an order of magnitude more efficient than strong baselines. …
If you did not already know
03 Saturday Jul 2021
Posted What is ...
in