DeepDetect google
DeepDetect is a deep learning API and server written in C++11. It makes state of the art deep learning easy to work with and integrate into existing applications. …

IMEXnet google
Deep convolutional neural networks have revolutionized many machine learning and computer vision tasks. Despite their enormous success, remaining key challenges limit their wider use. Pressing challenges include improving the network’s robustness to perturbations of the input images and simplifying the design of architectures that generalize. Another problem relates to the limited ‘field of view’ of convolution operators, which means that very deep networks are required to model nonlocal relations in high-resolution image data. We introduce the IMEXnet that addresses these challenges by adapting semi-implicit methods for partial differential equations. Compared to similar explicit networks such as the residual networks (ResNets) our network is more stable. This stability has been recently shown to reduce the sensitivity to small changes in the input features and improve generalization. The implicit step connects all pixels in the images and therefore addresses the field of view problem, while being comparable to standard convolutions in terms of the number of parameters and computational complexity. We also present a new dataset for semantic segmentation and demonstrate the effectiveness of our architecture using the NYU depth dataset. …

Effective Applications of the R Language (EARL) google
EARL is a Conference for users and developers of the open source R programming language. The primary focus of the Conference will be the commercial usage of R across a range of industry sectors with the aim of sharing knowledge and applications of the language. The EARL Conference Team is located at Mango Solutions, a data analysis company headquartered in the UK. …

Ecologically-Inspired GENetic Approach for Neural Network Structure Searching (EIGEN) google
Designing the structure of neural networks is considered one of the most challenging tasks in deep learning. Recently, a few approaches have been proposed to automatically search for the optimal structure of neural networks, however, they suffer from either prohibitive computation cost (e.g., 256 Hours on 250 GPU in [1]) or unsatisfactory performance compared to those of hand-crafted neural networks. In this paper, we propose an Ecologically-Inspired GENetic approach for neural network structure search (EIGEN), that includes succession, mimicry and gene duplication. Specifically, we first use primary succession to rapidly evolve a community of poor initialized neural network structures into a more diverse community, followed by a secondary succession stage for fine-grained searching based on the networks from the primary succession. Extinction is applied in both stages to reduce computational cost. Mimicry is employed during the entire evolution process to help the inferior networks imitate the behavior of a superior network and gene duplication is utilized to duplicate the learned blocks of novel structures, both of which help to find the better network structures. Extensive experimental results show that our proposed approach can achieve the similar or better performance compared to the existing genetic approaches with dramatically reduced computation cost. For example, the network discovered by our approach on CIFAR-100 dataset achieves 78.1% test accuracy under 120 GPU hours, compared to 77.0% test accuracy in more than 65, 536 GPU hours in [1]. …