HyperTools google
A python toolbox for gaining geometric insights into high-dimensional data. …

CompEngine google
Modern biomedical applications often involve time-series data, from high-throughput phenotyping of model organisms, through to individual disease diagnosis and treatment using biomedical data streams. Data and tools for time-series analysis are developed and applied across the sciences and in industry, but meaningful cross-disciplinary interactions are limited by the challenge of identifying fruitful connections. Here we introduce the web platform, CompEngine, a self-organizing, living library of time-series data that lowers the barrier to forming meaningful interdisciplinary connections between time series. Using a canonical feature-based representation, CompEngine places all time series in a common space, regardless of their origin, allowing users to upload their data and immediately explore interdisciplinary connections to other data with similar properties, and be alerted when similar data is uploaded in the future. In contrast to conventional databases, which are organized by assigned metadata, CompEngine incentivizes data sharing by automatically connecting experimental and theoretical scientists across disciplines based on the empirical structure of their data. CompEngine’s growing library of interdisciplinary time-series data also facilitates comprehensively characterization of algorithm performance across diverse types of data, and can be used to empirically motivate the development of new time-series analysis algorithms. …

WaveletNet google
We present a logarithmic-scale efficient convolutional neural network architecture for edge devices, named WaveletNet. Our model is based on the well-known depthwise convolution, and on two new layers, which we introduce in this work: a wavelet convolution and a depthwise fast wavelet transform. By breaking the symmetry in channel dimensions and applying a fast algorithm, WaveletNet shrinks the complexity of convolutional blocks by an O(logD/D) factor, where D is the number of channels. Experiments on CIFAR-10 and ImageNet classification show superior and comparable performances of WaveletNet compared to state-of-the-art models such as MobileNetV2. …

Dense Convolutional Network (DenseNet) google
Recent work has shown that convolutional networks can be substantially deeper, more accurate and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper we embrace this observation and introduce the Dense Convolutional Network (DenseNet), where each layer is directly connected to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections, one between each layer and its subsequent layer (treating the input as layer 0), our network has L(L+1)/2 direct connections. For each layer, the feature maps of all preceding layers are treated as separate inputs whereas its own feature maps are passed on as inputs to all subsequent layers. Our proposed connectivity pattern has several compelling advantages: it alleviates the vanishing gradient problem and strengthens feature propagation; despite the increase in connections, it encourages feature reuse and leads to a substantial reduction of parameters; its models tend to generalize surprisingly well. We evaluate our proposed architecture on five highly competitive object recognition benchmark tasks. The DenseNet obtains significant improvements over the state-of-the-art on all five of them (e.g., yielding 3.74% test error on CIFAR-10, 19.25% on CIFAR-100 and 1.59% on SVHN). …