FeATure TransfEr Network (FATTEN)
The problem of data augmentation in feature space is considered. A new architecture, denoted the FeATure TransfEr Network (FATTEN), is proposed for the modeling of feature trajectories induced by variations of object pose. This architecture exploits a parametrization of the pose manifold in terms of pose and appearance. This leads to a deep encoder/decoder network architecture, where the encoder factors into an appearance and a pose predictor. Unlike previous attempts at trajectory transfer, FATTEN can be efficiently trained end-to-end, with no need to train separate feature transfer functions. This is realized by supplying the decoder with information about a target pose and the use of a multi-task loss that penalizes category- and pose-mismatches. In result, FATTEN discourages discontinuous or non-smooth trajectories that fail to capture the structure of the pose manifold, and generalizes well on object recognition tasks involving large pose variation. Experimental results on the artificial ModelNet database show that it can successfully learn to map source features to target features of a desired pose, while preserving class identity. Most notably, by using feature space transfer for data augmentation (w.r.t. pose and depth) on SUN-RGBD objects, we demonstrate considerable performance improvements on one/few-shot object recognition in a transfer learning setup, compared to current state-of-the-art methods. …
Reservoir Computing
Reservoir computing is a framework for computation that may be viewed as an extension of neural networks. Typically an input signal is fed into a fixed (random) dynamical system called a reservoir and the dynamics of the reservoir map the input to a higher dimension. Then a simple readout mechanism is trained to read the state of the reservoir and map it to the desired output. The main benefit is that training is performed only at the readout stage and the reservoir is fixed. Liquid-state machines and echo state networks are two major types of reservoir computing. One important feature of this system is that it can use the computational power of naturally available systems which is different from the neural networks and it reduces the computational cost. …
Seasonal Hybrid ESD (S-H-ESD)
The primary algorithm, Seasonal Hybrid ESD (S-H-ESD), builds upon the Generalized ESD test for detecting anomalies. S-H-ESD can be used to detect both global and local anomalies. This is achieved by employing time series decomposition and using robust statistical metrics, viz., median together with ESD. In addition, for long time series such as 6 months of minutely data, the algorithm employs piecewise approximation. This is rooted to the fact that trend extraction in the presence of anomalies is non-trivial for anomaly detection. …
Discrete Fourier Cosine Quadrature Transform (FCQT)
The Hilbert transform (HT) and associated Gabor analytic signal (GAS) representation are well-known and widely used mathematical formulations for modeling and analysis of signals in various applications. In this study, like the HT, to obtain quadrature component of a signal, we propose the novel discrete Fourier cosine quadrature transforms (FCQTs) and discrete Fourier sine quadrature transforms (FSQTs), designated as Fourier quadrature transforms (FQTs). Using these FQTs, we propose sixteen Fourier-Singh analytic signal (FSAS) representations with following properties: (1) real part of eight FSAS representations is the original signal and imaginary part is the FCQT of the real part, (2) imaginary part of eight FSAS representations is the original signal and real part is the FSQT of the real part, (3) like the GAS, Fourier spectrum of the all FSAS representations has only positive frequencies, however unlike the GAS, the real and imaginary parts of the proposed FSAS representations are not orthogonal to each other. The Fourier decomposition method (FDM) is an adaptive data analysis approach to decompose a signal into a set of small number of Fourier intrinsic band functions which are AM-FM components. This study also proposes a new formulation of the FDM using the discrete cosine transform (DCT) with the GAS and FSAS representations, and demonstrate its efficacy for improved time-frequency-energy representation and analysis of nonlinear and non-stationary time series. …
If you did not already know
24 Thursday Jun 2021
Posted What is ...
in