Thinging google
This paper examines conceptual models and their application to computational thinking. Computational thinking is a fundamental skill for everybody, not just for computer scientists. It has been promoted as skills that are as fundamental for all as numeracy and literacy. According to authorities in the field, the best way to characterize computational thinking is the way in which computer scientists think and the manner in which they reason how computer scientists think for the rest of us. Core concepts in computational thinking include such notions as algorithmic thinking, abstraction, decomposition, and generalization. This raises several issues and challenges that still need to be addressed, including the fundamental characteristics of computational thinking and its relationship with modeling patterns (e.g., object-oriented) that lead to programming/coding. Thinking pattern refers to recurring templates used by designers in thinking. In this paper, we propose a representation of thinking activity by adopting a thinking pattern called thinging that utilizes a diagrammatic technique called thinging machine (TM). We claim that thinging is a valuable process as a fundamental skill for everybody in computational thinking. The viability of such a proclamation is illustrated through examples and a case study. …

Intrinsic Style Transfer google
We explore neural painters, a generative model for brushstrokes learned from a real non-differentiable and non-deterministic painting program. We show that when training an agent to ‘paint’ images using brushstrokes, using a differentiable neural painter leads to much faster convergence. We propose a method for encouraging this agent to follow human-like strokes when reconstructing digits. We also explore the use of a neural painter as a differentiable image parameterization. By directly optimizing brushstrokes to activate neurons in a pre-trained convolutional network, we can directly visualize ImageNet categories and generate ‘ideal’ paintings of each class. Finally, we present a new concept called intrinsic style transfer. By minimizing only the content loss from neural style transfer, we allow the artistic medium, in this case, brushstrokes, to naturally dictate the resulting style. …

AR-MDN google
Accurate demand forecasts can help on-line retail organizations better plan their supply-chain processes. The challenge, however, is the large number of associative factors that result in large, non-stationary shifts in demand, which traditional time series and regression approaches fail to model. In this paper, we propose a Neural Network architecture called AR-MDN, that simultaneously models associative factors, time-series trends and the variance in the demand. We first identify several causal features and use a combination of feature embeddings, MLP and LSTM to represent them. We then model the output density as a learned mixture of Gaussian distributions. The AR-MDN can be trained end-to-end without the need for additional supervision. We experiment on a dataset of an year’s worth of data over tens-of-thousands of products from Flipkart. The proposed architecture yields a significant improvement in forecasting accuracy when compared with existing alternatives. …

Synthetic Population via Gaussian Copula (SynC) google
Synthetic population generation is the process of combining multiple socioeonomic and demographic datasets from various sources and at different granularity, and downscaling them to an individual level. Although it is a fundamental step for many data science tasks, an efficient and standard framework is absent. In this study, we propose a multi-stage framework called SynC (Synthetic Population via Gaussian Copula) to fill the gap. SynC first removes potential outliers in the data and then fits the filtered data with a Gaussian copula model to correctly capture dependencies and marginal distributions of sampled survey data. Finally, SynC leverages neural networks to merge datasets into one and then scales them accordingly to match the marginal constraints. We make four key contributions in this work: 1) propose a novel framework for generating individual level data from aggregated data sources by combining state-of-the-art machine learning and statistical techniques, 2) design a metric for validating the accuracy of generated data when the ground truth is hard to obtain, 3) demonstrate its effectiveness with the Canada National Census data and presenting two real-world use cases where datasets of this nature can be leveraged by businesses, and 4) release an easy-to-use framework implementation for reproducibility. …