Lipizzaner
GANs are difficult to train due to convergence pathologies such as mode and discriminator collapse. We introduce Lipizzaner, an open source software system that allows machine learning engineers to train GANs in a distributed and robust way. Lipizzaner distributes a competitive coevolutionary algorithm which, by virtue of dual, adapting, generator and discriminator populations, is robust to collapses. The algorithm is well suited to efficient distribution because it uses a spatial grid abstraction. Training is local to each cell and strong intermediate training results are exchanged among overlapping neighborhoods allowing high performing solutions to propagate and improve with more rounds of training. Experiments on common image datasets overcome critical collapses. Communication overhead scales linearly when increasing the number of compute instances and we observe that increasing scale leads to improved model performance. …
edge2vec
Representation learning for networks provides a new way to mine graphs. Although current researches in this area are able to generate reliable results of node embeddings, they are still limited to homogeneous networks in which all nodes and edges are of the same type. While, increasingly, graphs are heterogeneous with multiple node- and edge- types in the real world. Existing heterogeneous embedding methods are mostly task-based or only able to deal with limited types of node & edge. To tackle this challenge, in this paper, an edge2vec model is proposed to represent nodes in ways that incorporate edge semantics represented as different edge-types in heterogeneous networks. An edge-type transition matrix is optimized from an Expectation-Maximization (EM) framework as an extra criterion of a biased node random walk on networks, and a biased skip-gram model is leveraged to learn node embeddings based on the random walks afterwards. edge2vec is validated and evaluated using three medical domain problems on an ensemble of complex medical networks (more than 10 node- \& edge- types): medical entity classification, compound-gene binding prediction, and medical information searching cost. Results show that by considering edge semantics, edge2vec significantly outperforms other state-of-art models on all three tasks. …
Graph-Regularized Multiview Canonical Correlation Analysis (GMCCA)
Multiview canonical correlation analysis (MCCA) seeks latent low-dimensional representations encountered with multiview data of shared entities (a.k.a. common sources). However, existing MCCA approaches do not exploit the geometry of the common sources, which may be available \emph{a priori}, or can be constructed using certain domain knowledge. This prior information about the common sources can be encoded by a graph, and be invoked as a regularizer to enrich the maximum variance MCCA framework. In this context, the present paper’s novel graph-regularized Multiview canonical correlation analysis (G) MCCA approach minimizes the distance between the wanted canonical variables and the common low-dimensional representations, while accounting for graph-induced knowledge of the common sources. Relying on a function capturing the extent low-dimensional representations of the multiple views are similar, a generalization bound of GMCCA is established based on Rademacher’s complexity. Tailored for setups where the number of data pairs is smaller than the data vector dimensions, a graph-regularized dual MCCA approach is also developed. To further deal with nonlinearities present in the data, graph-regularized kernel MCCA variants are put forward too. Interestingly, solutions of the graph-regularized linear, dual, and kernel MCCA, are all provided in terms of generalized eigenvalue decomposition. Several corroborating numerical tests using real datasets are provided to showcase the merits of the graph-regularized MCCA variants relative to several competing alternatives including MCCA, Laplacian-regularized MCCA, and (graph-regularized) PCA. …
Decision Model and Notation (DMN)
The primary goal of DMN is to provide an industry standard modelling notation for decision management and business rules that is readily understandable by all business users: from the business analysts who need to create initial decision requirements and then more detailed decision models, to the technical developers responsible for automating the decisions in processes, and finally, to the business people who will manage and monitor those decisions. The submission has been designed to be complementary to and useable alongside the OMG Business Process Model & Notation (BPMN) standard and will ensure that decision models are interchangeable across organizations. …
If you did not already know
07 Monday Jun 2021
Posted What is ...
in