Gaussian Chain Graph (CG) google
Chain graph models are generalizations of undirected and directed graphical models that contain a mixed set of directed and undirected edges. …

Knowledge Graph Attention Network (KGAT) google
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations — which connect two items with one or multiple linked attributes — are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node’s neighbors (which can be users, items, or attributes) to refine the node’s embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism. …

DeepSurvival google
Pedestrian’s road crossing behaviour is one of the important aspects of urban dynamics that will be affected by the introduction of autonomous vehicles. In this study we introduce DeepSurvival, a novel framework for estimating pedestrian’s waiting time at unsignalized mid-block crosswalks in mixed traffic conditions. We exploit the strengths of deep learning in capturing the nonlinearities in the data and develop a cox proportional hazard model with a deep neural network as the log-risk function. An embedded feature selection algorithm for reducing data dimensionality and enhancing the interpretability of the network is also developed. We test our framework on a dataset collected from 160 participants using an immersive virtual reality environment. Validation results showed that with a C-index of 0.64 our proposed framework outperformed the standard cox proportional hazard-based model with a C-index of 0.58. …

KGCleaner google
KGCleaner is a framework to \emph{identify} and \emph{correct} errors in data produced and delivered by an information extraction system. These tasks have been understudied and KGCleaner is the first to address both. We introduce a multi-task model that jointly learns to predict if an extracted relation is credible and repair it if not. We evaluate our approach and other models as instance of our framework on two collections: a Wikidata corpus of nearly 700K facts and 5M fact-relevant sentences and a collection of 30K facts from the 2015 TAC Knowledge Base Population task. For credibility classification, parameter efficient simple shallow neural network can achieve an absolute performance gain of 30 $F_1$ points on Wikidata and comparable performance on TAC. For the repair task, significant performance (at more than twice) gain can be obtained depending on the nature of the dataset and the models. …