Resampling Uncertainty Estimation (RUE) google
To use machine learning in high stakes applications (e.g. medicine), we need tools for building confidence in the system and evaluating whether it is reliable. Methods to improve model reliability are often applied at train time (e.g. using Bayesian inference to obtain uncertainty estimates). An alternative is to audit a fixed model subsequent to training. In this paper, we describe resampling uncertainty estimation (RUE), an algorithm to audit the pointwise reliability of predictions. Intuitively, RUE estimates the amount that a single prediction would change if the model had been fit on different training data drawn from the same distribution by using the gradient and Hessian of the model’s loss on training data. Experimentally, we show that RUE more effectively detects inaccurate predictions than existing tools for auditing reliability subsequent to training. We also show that RUE can create predictive distributions that are competitive with state-of-the-art methods like Monte Carlo dropout, probabilistic backpropagation, and deep ensembles, but does not depend on specific algorithms at train-time like these methods do. …

Hawkes Process google
Hawkes processes are a particularly interesting class of stochastic process that have been applied in diverse areas, from earthquake modelling to financial analysis. They are point processes whose defining characteristic is that they ‘self-excite’, meaning that each arrival increases the rate of future arrivals for some period of time. Hawkes processes are well established, particularly within the financial literature, yet many of the treatments are inaccessible to one not acquainted with the topic. This survey provides background, introduces the field and historical developments, and touches upon all major aspects of Hawkes processes.
Hawkes Processes

Positive Unlabeled Learning (PU Learning) google
PU learning, in which a binary classifier is learned in a semi-supervised way from only positive and unlabeled sample points. In PU learning, two sets of examples are assumed to be available for training: the positive set P {\displaystyle P} P and a mixed set U {\displaystyle U} U, which is assumed to contain both positive and negative samples, but without these being labeled as such. This contrasts with other forms of semisupervised learning, where it is assumed that a labeled set containing examples of both classes is available in addition to unlabeled samples. A variety of techniques exist to adapt supervised classifiers to the PU learning setting, including variants of the EM algorithm. PU learning has been successfully applied to text, time series, and bioinformatics tasks.

Learning from positive and unlabeled data or PU learning is the setting where a learner only has access to positive examples and unlabeled data. The assumption is that the unlabeled data can contain both positive and negative examples. This setting has attracted increasing interest within the machine learning literature as this type of data naturally arises in applications such as medical diagnosis and knowledge base completion.
Learning From Positive and Unlabeled Data: A Survey
PU Learning – Positive/unknown class machine learning approaches

Inductive Matrix Completion (IMC) google
Recommender systems (RS), which have been an essential part in a wide range of applications, can be formulated as a matrix completion (MC) problem. To boost the performance of MC, matrix completion with side information, called inductive matrix completion (IMC), was further proposed. In real applications, the factorized version of IMC is more favored due to its efficiency of optimization and implementation. Regarding the factorized version, traditional IMC method can be interpreted as learning an individual representation for each feature, which is independent from each other. Moreover, representations for the same features are shared across all users/items. However, the independent characteristic for features and shared characteristic for the same features across all users/items may limit the expressiveness of the model. The limitation also exists in variants of IMC, such as deep learning based IMC models. To break the limitation, we generalize recent advances of self-attention mechanism to IMC and propose a context-aware model called collaborative self-attention (CSA), which can jointly learn context-aware representations for features and perform inductive matrix completion process. Extensive experiments on three large-scale datasets from real RS applications demonstrate effectiveness of CSA. …