Feasible Graphical Lasso (FGLasso)
In this paper, we investigate seemingly unrelated regression (SUR) models that allow the number of equations (N) to be large, and to be comparable to the number of the observations in each equation (T). It is well known in the literature that the conventional SUR estimator, for example, the generalized least squares (GLS) estimator of Zellner (1962) does not perform well. As the main contribution of the paper, we propose a new feasible GLS estimator called the feasible graphical lasso (FGLasso) estimator. For a feasible implementation of the GLS estimator, we use the graphical lasso estimation of the precision matrix (the inverse of the covariance matrix of the equation system errors) assuming that the underlying unknown precision matrix is sparse. We derive asymptotic theories of the new estimator and investigate its finite sample properties via Monte-Carlo simulations. …
Multi-Motivation Behavior Modeling (MMBM)
In recent years, reinforcement learning (RL) methods have been applied to model gameplay with great success, achieving super-human performance in various environments, such as Atari, Go, and Poker. However, those studies mostly focus on winning the game and have largely ignored the rich and complex human motivations, which are essential for understanding different players’ diverse behaviors. In this paper, we present a novel method called Multi-Motivation Behavior Modeling (MMBM) that takes the multifaceted human motivations into consideration and models the underlying value structure of the players using inverse RL. Our approach does not require the access to the dynamic of the system, making it feasible to model complex interactive environments such as massively multiplayer online games. MMBM is tested on the World of Warcraft Avatar History dataset, which recorded over 70,000 users’ gameplay spanning three years period. Our model reveals the significant difference of value structures among different player groups. Using the results of motivation modeling, we also predict and explain their diverse gameplay behaviors and provide a quantitative assessment of how the redesign of the game environment impacts players’ behaviors. …
Convolutional Deep Averaging Network (CDAN)
Unordered feature sets are a nonstandard data structure that traditional neural networks are incapable of addressing in a principled manner. Providing a concatenation of features in an arbitrary order may lead to the learning of spurious patterns or biases that do not actually exist. Another complication is introduced if the number of features varies between each set. We propose convolutional deep averaging networks (CDANs) for classifying and learning representations of datasets whose instances comprise variable-size, unordered feature sets. CDANs are efficient, permutation-invariant, and capable of accepting sets of arbitrary size. We emphasize the importance of nonlinear feature embeddings for obtaining effective CDAN classifiers and illustrate their advantages in experiments versus linear embeddings and alternative permutation-invariant and -equivariant architectures. …
Interactive Similarity Projection (iSP)
Recent advances in machine learning allow us to analyze and describe the content of high-dimensional data like text, audio, images or other signals. In order to visualize that data in 2D or 3D, usually Dimensionality Reduction (DR) techniques are employed. Most of these techniques, e.g., PCA or t-SNE, produce static projections without taking into account corrections from humans or other data exploration scenarios. In this work, we propose the interactive Similarity Projection (iSP), a novel interactive DR framework based on similarity embeddings, where we form a differentiable objective based on the user interactions and perform learning using gradient descent, with an end-to-end trainable architecture. Two interaction scenarios are evaluated. First, a common methodology in multidimensional projection is to project a subset of data, arrange them in classes or clusters, and project the rest unseen dataset based on that manipulation, in a kind of semi-supervised interpolation. We report results that outperform competitive baselines in a wide range of metrics and datasets. Second, we explore the scenario of manipulating some classes, while enriching the optimization with high-dimensional neighbor information. Apart from improving classification precision and clustering on images and text documents, the new emerging structure of the projection unveils semantic manifolds. For example, on the Head Pose dataset, by just dragging the faces looking far left to the left and those looking far right to the right, all faces are re-arranged on a continuum even on the vertical axis (face up and down). This end-to-end framework can be used for fast, visual semi-supervised learning, manifold exploration, interactive domain adaptation of neural embeddings and transfer learning. …
If you did not already know
30 Sunday May 2021
Posted What is ...
in