Hierarchical Representation Learning on Heterogeneous Graph (HRLHG) google
While the volume of scholarly publications has increased at a frenetic pace, accessing and consuming the useful candidate papers, in very large digital libraries, is becoming an essential and challenging task for scholars. Unfortunately, because of language barrier, some scientists (especially the junior ones or graduate students who do not master other languages) cannot efficiently locate the publications hosted in a foreign language repository. In this study, we propose a novel solution, cross-language citation recommendation via Hierarchical Representation Learning on Heterogeneous Graph (HRLHG), to address this new problem. HRLHG can learn a representation function by mapping the publications, from multilingual repositories, to a low-dimensional joint embedding space from various kinds of vertexes and relations on a heterogeneous graph. By leveraging both global (task specific) plus local (task independent) information as well as a novel supervised hierarchical random walk algorithm, the proposed method can optimize the publication representations by maximizing the likelihood of locating the important cross-language neighborhoods on the graph. Experiment results show that the proposed method can not only outperform state-of-the-art baseline models, but also improve the interpretability of the representation model for cross-language citation recommendation task. …

Global Sensitivity Analysis (GSA) google
This presentation aims to introduce global sensitivity analysis (SA), targeting an audience unfamiliar with the topic, and to give practical hints about the associated advantages and the effort needed. To this effect, we shall review some techniques for sensitivity analysis, including those that are not global, by applying them to a simple example. This will give the audience a chance to contrast each method’s result against the audience’s own expectation of what the sensitivity pattern for the simple model should be. We shall also try to relate the discourse on the relative importance of model input factors to specific questions, such as ‘Which of the uncertain input factor(s) is so non-influential that we can safely fix it/them?’ or ‘If we could eliminate the uncertainty in one of the input factors, which factor should we choose to reduce the most the variance of the output?’ In this way, the selection of the method for sensitivity analysis will be put in relation to the framing of the analysis and to the interpretation and presentation of the results. The choice of the output of interest will be discussed in relation to the purpose of the model based analysis. The main methods that we present in this lecture are all related with one another, and are the method of Morris for factors’ screening and the variance-based measures. All are model-free, in the sense that their application does not rely on special assumptions on the behaviour of the model (such as linearity, monotonicity and additivity of the relationship between input factor and model output). Monte Carlo filtering will be also be discussed to demonstrate the usefulness of global sensitivity analysis in relation to estimation.
Global sensitivity analysis: An introduction (PDF Download Available)
Global sensitivity analysis for statistical model parameters

Navigator-Teacher-Scrutinizer Network (NTS-Net) google
Fine-grained classification is challenging due to the difficulty of finding discriminative features. Finding those subtle traits that fully characterize the object is not straightforward. To handle this circumstance, we propose a novel self-supervision mechanism to effectively localize informative regions without the need of bounding-box/part annotations. Our model, termed NTS-Net for Navigator-Teacher-Scrutinizer Network, consists of a Navigator agent, a Teacher agent and a Scrutinizer agent. In consideration of intrinsic consistency between informativeness of the regions and their probability being ground-truth class, we design a novel training paradigm, which enables Navigator to detect most informative regions under the guidance from Teacher. After that, the Scrutinizer scrutinizes the proposed regions from Navigator and makes predictions. Our model can be viewed as a multi-agent cooperation, wherein agents benefit from each other, and make progress together. NTS-Net can be trained end-to-end, while provides accurate fine-grained classification predictions as well as highly informative regions during inference. We achieve state-of-the-art performance in extensive benchmark datasets. …

Algojammer google
Algojammer is an experimental, proof-of-concept code editor for writing algorithms in Python. It was mainly written to assist with solving the kind of algorithm problems that feature in competitions like Google Code Jam, Topcoder and HackerRank. …