Empirical Equilibrium
We introduce empirical equilibrium, the prediction in a game that selects the Nash equilibria that can be approximated by a sequence of payoff-monotone distributions, a well-documented proxy for empirically plausible behavior. Then, we reevaluate implementation theory based on this equilibrium concept. We show that in a partnership dissolution environment with complete information, two popular auctions that are essentially equivalent for the Nash equilibrium prediction, can be expected to differ in fundamental ways when they are operated. Besides the direct policy implications, two general consequences follow. First, a mechanism designer may not be constrained by typical invariance properties. Second, a mechanism designer who does not account for the empirical plausibility of equilibria may inadvertently design implicitly biased mechanisms. …
DivGraphPointer
Keyphrase extraction from documents is useful to a variety of applications such as information retrieval and document summarization. This paper presents an end-to-end method called DivGraphPointer for extracting a set of diversified keyphrases from a document. DivGraphPointer combines the advantages of traditional graph-based ranking methods and recent neural network-based approaches. Specifically, given a document, a word graph is constructed from the document based on word proximity and is encoded with graph convolutional networks, which effectively capture document-level word salience by modeling long-range dependency between words in the document and aggregating multiple appearances of identical words into one node. Furthermore, we propose a diversified point network to generate a set of diverse keyphrases out of the word graph in the decoding process. Experimental results on five benchmark data sets show that our proposed method significantly outperforms the existing state-of-the-art approaches. …
Gated Recurrent Unit (GRU)
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. Their performance on polyphonic music modeling and speech signal modeling was found to be similar to that of long short-term memory (LSTM). However, GRUs have been shown to exhibit better performance on smaller datasets. They have fewer parameters than LSTM, as they lack an output gate. …
GAN-test
Generative adversarial networks (GANs) are one of the most popular methods for generating images today. While impressive results have been validated by visual inspection, a number of quantitative criteria have emerged only recently. We argue here that the existing ones are insufficient and need to be in adequation with the task at hand. In this paper we introduce two measures based on image classification—GAN-train and GAN-test, which approximate the recall (diversity) and precision (quality of the image) of GANs respectively. We evaluate a number of recent GAN approaches based on these two measures and demonstrate a clear difference in performance. Furthermore, we observe that the increasing difficulty of the dataset, from CIFAR10 over CIFAR100 to ImageNet, shows an inverse correlation with the quality of the GANs, as clearly evident from our measures. …
If you did not already know
23 Sunday May 2021
Posted What is ...
in