Apache Clerezza google
Clerezza allows to easily develop semantic web applications by providing tools to manipulate RDF data, create RESTful Web Services and Renderlets using ScalaServerPages. Contents are stored as triples based on W3C RDF specification. These triples are stored via Clerezza’s Smart Content Binding (SCB). SCB defines a technology-agnostic layer to access and modify triple stores. It provides a java implementation of the graph data model specified by W3C RDF and functionalities to operate on that data model. SCB offers a service interface to access multiple named graphs and it can use various providers to manage RDF graphs in a technology specific manner, e.g., using Jena or Sesame. It also provides for adaptors that allow an application to use various APIs (including the Jena api) to process RDF graphs. Furthermore, SCB offers a serialization and a parsing service to convert a graph into a certain representation (format) and vice versa. …

Robust Variable Power Fractional LMS Algorithm (RVP-FLMS) google
In this paper, we propose an adaptive framework for the variable power of the fractional least mean square (FLMS) algorithm. The proposed algorithm named as robust variable power FLMS (RVP-FLMS) dynamically adapts the fractional power of the FLMS to achieve high convergence rate with low steady state error. For the evaluation purpose, the problems of system identification and channel equalization are considered. The experiments clearly show that the proposed approach achieves better convergence rate and lower steady-state error compared to the FLMS. The MATLAB code for the related simulation is available online at https://goo.gl/dGTGmP.

Breadth-first Search (BFS) google
In graph theory, breadth-first search (BFS) is a strategy for searching in a graph when search is limited to essentially two operations: (a) visit and inspect a node of a graph; (b) gain access to visit the nodes that neighbor the currently visited node. The BFS begins at a root node and inspects all the neighboring nodes. Then for each of those neighbor nodes in turn, it inspects their neighbor nodes which were unvisited, and so on. Compare BFS with the equivalent, but more memory-efficient Iterative deepening depth-first search and contrast with depth-first search. …

Stochastic Average Adjusted Gradient (SAAG) google
Big Data problems in Machine Learning have large number of data points or large number of features, or both, which make training of models di cult because of high computational complexities of single iteration of learning algorithms. To solve such learning problems, Stochastic Approximation o ers an optimization approach to make complexity of each it- eration independent of number of data points by taking only one data point or mini-batch of data points during each iteration and thereby helping to solve problems with large num- ber of data points. Similarly, Coordinate Descent o ers another optimization approach to make iteration complexity independent of the number of features/coordinates/variables by taking only one feature or block of features, instead of all, during an iteration and thereby helping to solve problems with large number of features. In this paper, an op- timization framework, namely, Batch Block Optimization Framework has been developed to solve big data problems using the best of Stochastic Approximation as well as the best of Coordinate Descent approaches, independent of any solver. This framework is used to solve strongly convex and smooth empirical risk minimization problem with gradient de- scent (as a solver) and two novel Stochastic Average Adjusted Gradient methods have been proposed to reduce variance in mini-batch and block-coordinate setting of the developed framework. Theoretical analysis prove linear convergence of the proposed methods and empirical results with bench marked datasets prove the superiority of proposed methods against existing methods.
SAAGs: Biased Stochastic Variance Reduction Methods