Bayesian Conditional Generative Adverserial Networks (BC-GAN) google
Traditional GANs use a deterministic generator function (typically a neural network) to transform a random noise input $z$ to a sample $\mathbf{x}$ that the discriminator seeks to distinguish. We propose a new GAN called Bayesian Conditional Generative Adversarial Networks (BC-GANs) that use a random generator function to transform a deterministic input $y’$ to a sample $\mathbf{x}$. Our BC-GANs extend traditional GANs to a Bayesian framework, and naturally handle unsupervised learning, supervised learning, and semi-supervised learning problems. Experiments show that the proposed BC-GANs outperforms the state-of-the-arts. …

Generalized Canonical Polyadic Tensor Decomposition (GCP) google
Tensor decomposition is a fundamental unsupervised machine learning method in data science, with applications including network analysis and sensor data processing. This work develops a generalized canonical polyadic (GCP) low-rank tensor decomposition that allows other loss functions besides squared error. For instance, we can use logistic loss or Kullback-Leibler divergence, enabling tensor decomposition for binary or count data. We present a variety statistically-motivated loss functions for various scenarios. We provide a generalized framework for computing gradients and handling missing data that enables the use of standard optimization methods for fitting the model. We demonstrate the flexibility of GCP on several real-world examples including interactions in a social network, neural activity in a mouse, and monthly rainfall measurements in India. …

Mutex Watershed google
Image partitioning, or segmentation without semantics, is the task of decomposing an image into distinct segments, or equivalently to detect closed contours. Most prior work either requires seeds, one per segment; or a threshold; or formulates the task as multicut / correlation clustering, an NP-hard problem. Here, we propose a greedy algorithm for signed graph partitioning, the ‘Mutex Watershed’. Unlike seeded watershed, the algorithm can accommodate not only attractive but also repulsive cues, allowing it to find a previously unspecified number of segments without the need for explicit seeds or a tunable threshold. We also prove that this simple algorithm solves to global optimality an objective function that is intimately related to the multicut / correlation clustering integer linear programming formulation. The algorithm is deterministic, very simple to implement, and has empirically linearithmic complexity. When presented with short-range attractive and long-range repulsive cues from a deep neural network, the Mutex Watershed gives the best results currently known for the competitive ISBI 2012 EM segmentation benchmark. …

Action-Specific Deep Recurrent Q-Network (ADRQN) google
Deep Reinforcement Learning (RL) recently emerged as one of the most competitive approaches for learning in sequential decision making problems with fully observable environments, e.g., computer Go. However, very little work has been done in deep RL to handle partially observable environments. We propose a new architecture called Action-specific Deep Recurrent Q-Network (ADRQN) to enhance learning performance in partially observable domains. Actions are encoded by a fully connected layer and coupled with a convolutional observation to form an action-observation pair. The time series of action-observation pairs are then integrated by an LSTM layer that learns latent states based on which a fully connected layer computes Q-values as in conventional Deep Q-Networks (DQNs). We demonstrate the effectiveness of our new architecture in several partially observable domains, including flickering Atari games. …