Concept-Oriented Deep Learning (CODL)
Concepts are the foundation of human deep learning, understanding, and knowledge integration and transfer. We propose concept-oriented deep learning (CODL) which extends (machine) deep learning with concept representations and conceptual understanding capability. CODL addresses some of the major limitations of deep learning: interpretability, transferability, contextual adaptation, and requirement for lots of labeled training data. We discuss the major aspects of CODL including concept graph, concept representations, concept exemplars, and concept representation learning systems supporting incremental and continual learning. …
EXTRA
State-of-the-art in network science of teams offers effective recommendation methods to answer questions like who is the best replacement, what is the best team expansion strategy, but lacks intuitive ways to explain why the optimization algorithm gives the specific recommendation for a given team optimization scenario. To tackle this problem, we develop an interactive prototype system, EXTRA, as the first step towards addressing such a sense-making challenge, through the lens of the underlying network where teams embed, to explain the team recommendation results. The main advantages are (1) Algorithm efficacy: we propose an effective and fast algorithm to explain random walk graph kernel, the central technique for networked team recommendation; (2) Intuitive visual explanation: we present intuitive visual analysis of the recommendation results, which can help users better understand the rationality of the underlying team recommendation algorithm. …
Rectified Decision Tree (ReDT)
How to obtain a model with good interpretability and performance has always been an important research topic. In this paper, we propose rectified decision trees (ReDT), a knowledge distillation based decision trees rectification with high interpretability, small model size, and empirical soundness. Specifically, we extend the impurity calculation and the pure ending condition of the classical decision tree to propose a decision tree extension that allows the use of soft labels generated by a well-trained teacher model in training and prediction process. It is worth noting that for the acquisition of soft labels, we propose a new multiple cross-validation based method to reduce the effects of randomness and overfitting. These approaches ensure that ReDT retains excellent interpretability and even achieves fewer nodes than the decision tree in the aspect of compression while having relatively good performance. Besides, in contrast to traditional knowledge distillation, back propagation of the student model is not necessarily required in ReDT, which is an attempt of a new knowledge distillation approach. Extensive experiments are conducted, which demonstrates the superiority of ReDT in interpretability, compression, and empirical soundness. …
HyperTrick
Training intelligent agents through reinforcement learning is a notoriously unstable procedure. Massive parallelization on GPUs and distributed systems has been exploited to generate a large amount of training experiences and consequently reduce instabilities, but the success of training remains strongly influenced by the choice of the hyperparameters. To overcome this issue, we introduce HyperTrick, a new metaoptimization algorithm, and show its effective application to tune hyperparameters in the case of deep reinforcement learning, while learning to play different Atari games on a distributed system. Our analysis provides evidence of the interaction between the identification of the optimal hyperparameters and the learned policy, that is typical of the case of metaoptimization for deep reinforcement learning. When compared with state-of-the-art metaoptimization algorithms, HyperTrick is characterized by a simpler implementation and it allows learning similar policies, while making a more effective use of the computational resources in a distributed system. …
If you did not already know
05 Monday Apr 2021
Posted What is ...
in