Gradual Tuning
In this paper we present an alternative strategy for fine-tuning the parameters of a network. We named the technique Gradual Tuning. Once trained on a first task, the network is fine-tuned on a second task by modifying a progressively larger set of the network’s parameters. We test Gradual Tuning on different transfer learning tasks, using networks of different sizes trained with different regularization techniques. The result shows that compared to the usual fine tuning, our approach significantly reduces catastrophic forgetting of the initial task, while still retaining comparable if not better performance on the new task. …
XNOR Neural Engine
Binary Neural Networks (BNNs) are promising to deliver accuracy comparable to conventional deep neural networks at a fraction of the cost in terms of memory and energy. In this paper, we introduce the XNOR Neural Engine (XNE), a fully digital configurable hardware accelerator IP for BNNs, integrated within a microcontroller unit (MCU) equipped with an autonomous I/O subsystem and hybrid SRAM / standard cell memory. The XNE is able to fully compute convolutional and dense layers in autonomy or in cooperation with the core in the MCU to realize more complex behaviors. We show post-synthesis results in 65nm and 22nm technology for the XNE IP and post-layout results in 22nm for the full MCU indicating that this system can drop the energy cost per binary operation to 21.6fJ per operation at 0.4V, and at the same time is flexible and performant enough to execute state-of-the-art BNN topologies such as ResNet-34 in less than 2.2mJ per frame at 8.9 fps. …
Nested Polyhedral Model
Hardware architectures and machine learning (ML) libraries evolve rapidly. Traditional compilers often fail to generate high-performance code across the spectrum of new hardware offerings. To mitigate, engineers develop hand-tuned kernels for each ML library update and hardware upgrade. Unfortunately, this approach requires excessive engineering effort to scale or maintain with any degree of state-of-the-art performance. Here we present a Nested Polyhedral Model for representing highly parallelizable computations with limited dependencies between iterations. This model provides an underlying framework for an intermediate representation (IR) called Stripe, amenable to standard compiler techniques while naturally modeling key aspects of modern ML computing. Stripe represents parallelism, efficient memory layout, and multiple compute units at a level of abstraction amenable to automatic optimization. We describe how Stripe enables a compiler for ML in the style of LLVM that allows independent development of algorithms, optimizations, and hardware accelerators. We also discuss the design exploration advantages of Stripe over kernel libraries and schedule-based or schedule-space-based code generation. …
Generative Adversarial Tree Search (GATS)
We propose Generative Adversarial Tree Search (GATS), a sample-efficient Deep Reinforcement Learning (DRL) algorithm. While Monte Carlo Tree Search (MCTS) is known to be effective for search and planning in RL, it is often sample-inefficient and therefore expensive to apply in practice. In this work, we develop a Generative Adversarial Network (GAN) architecture to model an environment’s dynamics and a predictor model for the reward function. We exploit collected data from interaction with the environment to learn these models, which we then use for model-based planning. During planning, we deploy a finite depth MCTS, using the learned model for tree search and a learned Q-value for the leaves, to find the best action. We theoretically show that GATS improves the bias-variance trade-off in value-based DRL. Moreover, we show that the generative model learns the model dynamics using orders of magnitude fewer samples than the Q-learner. In non-stationary settings where the environment model changes, we find the generative model adapts significantly faster than the Q-learner to the new environment. …
If you did not already know
25 Thursday Mar 2021
Posted What is ...
in