Active Exploration in Markov Decision Processes google
We introduce the active exploration problem in Markov decision processes (MDPs). Each state of the MDP is characterized by a random value and the learner should gather samples to estimate the mean value of each state as accurately as possible. Similarly to active exploration in multi-armed bandit (MAB), states may have different levels of noise, so that the higher the noise, the more samples are needed. As the noise level is initially unknown, we need to trade off the exploration of the environment to estimate the noise and the exploitation of these estimates to compute a policy maximizing the accuracy of the mean predictions. We introduce a novel learning algorithm to solve this problem showing that active exploration in MDPs may be significantly more difficult than in MAB. We also derive a heuristic procedure to mitigate the negative effect of slowly mixing policies. Finally, we validate our findings on simple numerical simulations. …

q-Space Novelty Detection google
In machine learning, novelty detection is the task of identifying novel unseen data. During training, only samples from the normal class are available. Test samples are classified as normal or abnormal by assignment of a novelty score. Here we propose novelty detection methods based on training variational autoencoders (VAEs) on normal data. Since abnormal samples are not used during training, we define novelty metrics based on the (partially complementary) assumptions that the VAE is less capable of reconstructing abnormal samples well; that abnormal samples more strongly violate the VAE regularizer; and that abnormal samples differ from normal samples not only in input-feature space, but also in the VAE latent space and VAE output. These approaches, combined with various possibilities of using (e.g.~sampling) the probabilistic VAE to obtain scalar novelty scores, yield a large family of methods. We apply these methods to magnetic resonance imaging, namely to the detection of diffusion-space (\mbox{q-space}) abnormalities in diffusion MRI scans of multiple sclerosis patients, i.e.~to detect multiple sclerosis lesions without using any lesion labels for training. Many of our methods outperform previously proposed q-space novelty detection methods. …

SCOUT google
Finding the right cloud configuration for workloads is an essential step to ensure good performance and contain running costs. A poor choice of cloud configuration decreases application performance and increases running cost significantly. While Bayesian Optimization is effective and applicable to any workloads, it is fragile because performance and workload are hard to model (to predict). In this paper, we propose a novel method, SCOUT. The central insight of SCOUT is that using prior measurements, even those for different workloads, improves search performance and reduces search cost. At its core, SCOUT extracts search hints (inference of resource requirements) from low-level performance metrics. Such hints enable SCOUT to navigate through the search space more efficiently—only spotlight region will be searched. We evaluate SCOUT with 107 workloads on Apache Hadoop and Spark. The experimental results demonstrate that our approach finds better cloud configurations with a lower search cost than state of the art methods. Based on this work, we conclude that (i) low-level performance information is necessary for finding the right cloud configuration in an effective, efficient and reliable way, and (ii) a search method can be guided by historical data, thereby reducing cost and improving performance. …

Interaction Network google
Self-organization is a natural phenomenon that emerges in systems with a large number of interacting components. Self-organized systems show robustness, scalability, and flexibility, which are essential properties when handling real-world problems. Swarm intelligence seeks to design nature-inspired algorithms with a high degree of self-organization. Yet, we do not know why swarm-based algorithms work well and neither we can compare the different approaches in the literature. The lack of a common framework capable of characterizing these several swarm-based algorithms, transcending their particularities, has led to a stream of publications inspired by different aspects of nature without much regard as to whether they are similar to already existing approaches. We address this gap by introducing a network-based framework – the interaction network – to examine computational swarm-based systems via the optics of social dynamics. We discuss the social dimension of several swarm classes and provide a case study of the Particle Swarm Optimization. The interaction network enables a better understanding of the plethora of approaches currently available by looking at them from a general perspective focusing on the structure of the social interactions. …