Universal Sentence Encoder
We present models for encoding sentences into embedding vectors that specifically target transfer learning to other NLP tasks. The models are efficient and result in accurate performance on diverse transfer tasks. Two variants of the encoding models allow for trade-offs between accuracy and compute resources. For both variants, we investigate and report the relationship between model complexity, resource consumption, the availability of transfer task training data, and task performance. Comparisons are made with baselines that use word level transfer learning via pretrained word embeddings as well as baselines do not use any transfer learning. We find that transfer learning using sentence embeddings tends to outperform word level transfer. With transfer learning via sentence embeddings, we observe surprisingly good performance with minimal amounts of supervised training data for a transfer task. We obtain encouraging results on Word Embedding Association Tests (WEAT) targeted at detecting model bias. Our pre-trained sentence encoding models are made freely available for download and on TF Hub. …
Topological Regularizer for Classifiers (TopoReg)
Regularization plays a crucial role in supervised learning. A successfully regularized model strikes a balance between a perfect description of the training data and the ability to generalize to unseen data. Most existing methods enforce a global regularization in a structure agnostic manner. In this paper, we initiate a new direction and propose to enforce the structural simplicity of the classification boundary by regularizing over its topological complexity. In particular, our measurement of topological complexity incorporates the importance of topological features (e.g., connected components, handles, and so on) in a meaningful manner, and provides a direct control over spurious topological structures. We incorporate the new measurement as a topological loss in training classifiers. We also propose an efficient algorithm to compute the gradient. Our method provides a novel way to topologically simplify the global structure of the model, without having to sacrifice too much of the flexibility of the model. We demonstrate the effectiveness of our new topological regularizer on a range of synthetic and real-world datasets. …
PatchShuffle Regularization
This paper focuses on regularizing the training of the convolutional neural network (CNN). We propose a new regularization approach named “PatchShuffle“ that can be adopted in any classification-oriented CNN models. It is easy to implement: in each mini-batch, images or feature maps are randomly chosen to undergo a transformation such that pixels within each local patch are shuffled. Through generating images and feature maps with interior orderless patches, PatchShuffle creates rich local variations, reduces the risk of network overfitting, and can be viewed as a beneficial supplement to various kinds of training regularization techniques, such as weight decay, model ensemble and dropout. Experiments on four representative classification datasets show that PatchShuffle improves the generalization ability of CNN especially when the data is scarce. Moreover, we empirically illustrate that CNN models trained with PatchShuffle are more robust to noise and local changes in an image. …
Hierarchical Multiagent Teaching
Heterogeneous knowledge naturally arises among different agents in cooperative multiagent reinforcement learning. As such, learning can be greatly improved if agents can effectively pass their knowledge on to other agents. Existing work has demonstrated that peer-to-peer knowledge transfer, a process referred to as action advising, improves team-wide learning. In contrast to previous frameworks that advise at the level of primitive actions, we aim to learn high-level teaching policies that decide when and what high-level action (e.g., sub-goal) to advise a teammate. We introduce a new learning to teach framework, called hierarchical multiagent teaching (HMAT). The proposed framework solves difficulties faced by prior work on multiagent teaching when operating in domains with long horizons, delayed rewards, and continuous states/actions by leveraging temporal abstraction and deep function approximation. Our empirical evaluations show that HMAT accelerates team-wide learning progress in difficult environments that are more complex than those explored in previous work. HMAT also learns teaching policies that can be transferred to different teammates/tasks and can even teach teammates with heterogeneous action spaces. …
If you did not already know
15 Monday Mar 2021
Posted What is ...
in