Distributionally Robust Reinforcement Learning (DR-RL)
Generalization to unknown/uncertain environments of reinforcement learning algorithms is crucial for real-world applications. In this work, we explicitly consider uncertainty associated with the test environment through an uncertainty set. We formulate the Distributionally Robust Reinforcement Learning (DR-RL) objective that consists in maximizing performance against a worst-case policy in uncertainty set centered at the reference policy. Based on this objective, we derive computationally efficient policy improvement algorithm that benefits from Distributionally Robust Optimization (DRO) guarantees. Further, we propose an iterative procedure that increases stability of learning, called Distributionally Robust Policy Iteration. Combined with maximum entropy framework, we derive a distributionally robust variant of Soft Q-learning that enjoys efficient practical implementation and produces policies with robust behaviour at test time. Our formulation provides a unified view on a number of safe RL algorithms and recent empirical successes. …
GPipe
GPipe is a scalable pipeline parallelism library that enables learning of giant deep neural networks. It partitions network layers across accelerators and pipelines execution to achieve high hardware utilization. It leverages recomputation to minimize activation memory usage. For example, using partitions over 8 accelerators, it is able to train networks that are 25x larger, demonstrating its scalability. It also guarantees that the computed gradients remain consistent regardless of the number of partitions. It achieves an almost linear speed up without any changes in the model parameters: when using 4x more accelerators, training the same model is up to 3.5x faster. We train a 557 million parameters AmoebaNet model on ImageNet and achieve a new state-of-the-art 84.3% top-1 / 97.0% top-5 accuracy on ImageNet. Finally, we use this learned model as an initialization for training 7 different popular image classification datasets and obtain results that exceed the best published ones on 5 of them, including pushing the CIFAR-10 accuracy to 99% and CIFAR-100 accuracy to 91.3%.
Explained: GPipe – Training Giant Neural Nets using Pipeline Parallelism …
Population Based Augmentation (PBA)
A key challenge in leveraging data augmentation for neural network training is choosing an effective augmentation policy from a large search space of candidate operations. Properly chosen augmentation policies can lead to significant generalization improvements; however, state-of-the-art approaches such as AutoAugment are computationally infeasible to run for the ordinary user. In this paper, we introduce a new data augmentation algorithm, Population Based Augmentation (PBA), which generates nonstationary augmentation policy schedules instead of a fixed augmentation policy. We show that PBA can match the performance of AutoAugment on CIFAR-10, CIFAR-100, and SVHN, with three orders of magnitude less overall compute. On CIFAR-10 we achieve a mean test error of 1.46%, which is a slight improvement upon the current state-of-the-art. The code for PBA is open source and is available at https://…/pba. …
Clickstream Analytics
A clickstream is the recording of the parts of the screen a computer user clicks on while web browsing or using another software application. As the user clicks anywhere in the webpage or application, the action is logged on a client or inside the web server, as well as possibly the web browser, router, proxy server or ad server. Clickstream analysis is useful for web activity analysis, software testing, market research, and for analyzing employee productivity. …
If you did not already know
07 Sunday Mar 2021
Posted What is ...
in