Self-Adaptive Discrete Particle Swarm Optimization Algorithm With Genetic Algorithm Operators (GA-DPSO) google
Compared to traditional distributed computing environments such as grids, cloud computing provides a more cost-effective way to deploy scientific workflows. Each task of a scientific workflow requires several large datasets that are located in different datacenters from the cloud computing environment, resulting in serious data transmission delays. Edge computing reduces the data transmission delays and supports the fixed storing manner for scientific workflow private datasets, but there is a bottleneck in its storage capacity. It is a challenge to combine the advantages of both edge computing and cloud computing to rationalize the data placement of scientific workflow, and optimize the data transmission time across different datacenters. Traditional data placement strategies maintain load balancing with a given number of datacenters, which results in a large data transmission time. In this study, a self-adaptive discrete particle swarm optimization algorithm with genetic algorithm operators (GA-DPSO) was proposed to optimize the data transmission time when placing data for a scientific workflow. This approach considered the characteristics of data placement combining edge computing and cloud computing. In addition, it considered the impact factors impacting transmission delay, such as the band-width between datacenters, the number of edge datacenters, and the storage capacity of edge datacenters. The crossover operator and mutation operator of the genetic algorithm were adopted to avoid the premature convergence of the traditional particle swarm optimization algorithm, which enhanced the diversity of population evolution and effectively reduced the data transmission time. The experimental results show that the data placement strategy based on GA-DPSO can effectively reduce the data transmission time during workflow execution combining edge computing and cloud computing. …

MAESTRO google
We present MAESTRO, a framework to describe and analyze CNN dataflows, and predict performance and energy-efficiency when running neural network layers across various hardware configurations. This includes two components: (i) a concise language to describe arbitrary dataflows and (ii) and analysis framework that accepts the dataflow description, hardware resource description, and DNN layer description as inputs and generates buffer requirements, buffer access counts, network-on-chip (NoC) bandwidth requirements, and roofline performance information. We demonstrate both components across several dataflows as case studies. …

Guided Complement Entropy (GCE) google
Model robustness has been an important issue, since adding small adversarial perturbations to images is sufficient to drive the model accuracy down to nearly zero. In this paper, we propose a new training objective ‘Guided Complement Entropy’ (GCE) that has dual desirable effects: (a) neutralizing the predicted probabilities of incorrect classes, and (b) maximizing the predicted probability of the ground-truth class, particularly when (a) is achieved. Training with GCE encourages models to learn latent representations where samples of different classes form distinct clusters, which we argue, improves the model robustness against adversarial perturbations. Furthermore, compared with the state-of-the-arts trained with cross-entropy, same models trained with GCE achieve significant improvements on the robustness against white-box adversarial attacks, both with and without adversarial training. When no attack is present, training with GCE also outperforms cross-entropy in terms of model accuracy. …

Distributed Self-Paced Learning Method (DSPL) google
Self-paced learning (SPL) mimics the cognitive process of humans, who generally learn from easy samples to hard ones. One key issue in SPL is the training process required for each instance weight depends on the other samples and thus cannot easily be run in a distributed manner in a large-scale dataset. In this paper, we reformulate the self-paced learning problem into a distributed setting and propose a novel Distributed Self-Paced Learning method (DSPL) to handle large-scale datasets. Specifically, both the model and instance weights can be optimized in parallel for each batch based on a consensus alternating direction method of multipliers. We also prove the convergence of our algorithm under mild conditions. Extensive experiments on both synthetic and real datasets demonstrate that our approach is superior to those of existing methods. …