Decentralized Simultaneous Perturbation Stochastic Approximations, with Constant Sensitivity Parameters (DSPG) google
In this paper, we present an asynchronous approximate gradient method that is easy to implement called DSPG (Decentralized Simultaneous Perturbation Stochastic Approximations, with Constant Sensitivity Parameters). It is obtained by modifying SPSA (Simultaneous Perturbation Stochastic Approximations) to allow for decentralized optimization in multi-agent learning and distributed control scenarios. SPSA is a popular approximate gradient method developed by Spall, that is used in Robotics and Learning. In the multi-agent learning setup considered herein, the agents are assumed to be asynchronous (agents abide by their local clocks) and communicate via a wireless medium, that is prone to losses and delays. We analyze the gradient estimation bias that arises from setting the sensitivity parameters to a single value, and the bias that arises from communication losses and delays. Specifically, we show that these biases can be countered through better and frequent communication and/or by choosing a small fixed value for the sensitivity parameters. We also discuss the variance of the gradient estimator and its effect on the rate of convergence. Finally, we present numerical results supporting DSPG and the aforementioned theories and discussions. …

Recurrent Distribution Regression Network (RDRN) google
While deep neural networks have achieved groundbreaking prediction results in many tasks, there is a class of data where existing architectures are not optimal — sequences of probability distributions. Performing forward prediction on sequences of distributions has many important applications. However, there are two main challenges in designing a network model for this task. First, neural networks are unable to encode distributions compactly as each node encodes just a real value. A recent work of Distribution Regression Network (DRN) solved this problem with a novel network that encodes an entire distribution in a single node, resulting in improved accuracies while using much fewer parameters than neural networks. However, despite its compact distribution representation, DRN does not address the second challenge, which is the need to model time dependencies in a sequence of distributions. In this paper, we propose our Recurrent Distribution Regression Network (RDRN) which adopts a recurrent architecture for DRN. The combination of compact distribution representation and shared weights architecture across time steps makes RDRN suitable for modeling the time dependencies in a distribution sequence. Compared to neural networks and DRN, RDRN achieves the best prediction performance while keeping the network compact. …

Eigenface google
Eigenfaces is the name given to a set of eigenvectors when they are used in the computer vision problem of human face recognition. The approach of using eigenfaces for recognition was developed by Sirovich and Kirby (1987) and used by Matthew Turk and Alex Pentland in face classification. The eigenvectors are derived from the covariance matrix of the probability distribution over the high-dimensional vector space of face images. The eigenfaces themselves form a basis set of all images used to construct the covariance matrix. This produces dimension reduction by allowing the smaller set of basis images to represent the original training images. Classification can be achieved by comparing how faces are represented by the basis set. …

Persistence Curve google
Persistence diagrams are a main tool in the field of Topological Data Analysis (TDA). They contain fruitful information about the shape of data. The use of machine learning algorithms on the space of persistence diagrams proves to be challenging as the space is complicated. For that reason, summarizing and vectorizing these diagrams is an important topic currently researched in TDA. In this work, we provide a general framework of summarizing diagrams that we call Persistence Curves (PC). The main idea is so-called Fundamental Lemma of Persistent Homology, which is derived from the classic elder rule. Under this framework, certain well-known summaries, such as persistent Betti numbers, and persistence landscape, are special cases of the PC. Moreover, we prove a rigorous bound for a general families of PCs. In particular, certain family of PCs admit the stability property under an additional assumption. Finally, we apply PCs to textures classification on four well-know texture datasets. The result outperforms several existing TDA methods. …