AutoSpearman
The interpretation of defect models heavily relies on software metrics that are used to construct them. However, such software metrics are often correlated to defect models. Prior work often uses feature selection techniques to remove correlated metrics in order to improve the performance of defect models. Yet, the interpretation of defect models may be misleading if feature selection techniques produce subsets of inconsistent and correlated metrics. In this paper, we investigate the consistency and correlation of the subsets of metrics that are produced by nine commonly-used feature selection techniques. Through a case study of 13 publicly-available defect datasets, we find that feature selection techniques produce inconsistent subsets of metrics and do not mitigate correlated metrics, suggesting that feature selection techniques should not be used and correlation analyses must be applied when the goal is model interpretation. Since correlation analyses often involve manual selection of metrics by a domain expert, we introduce AutoSpearman, an automated metric selection approach based on correlation analyses. Our evaluation indicates that AutoSpearman yields the highest consistency of subsets of metrics among training samples and mitigates correlated metrics, while impacting model performance by 1-2%pts. Thus, to automatically mitigate correlated metrics when interpreting defect models, we recommend future studies use AutoSpearman in lieu of commonly-used feature selection techniques. …
KloakDB
A private data federation enables data owners to pool their information for querying without disclosing their secret tuples to one another. Here, a client queries the union of the records of all data owners. The data owners work together to answer the query using privacy-preserving algorithms that prevent them from learning unauthorized information about the inputs of their peers. Only the client, and a federation coordinator, learn the query’s output. KloakDB is a private data federation that uses trusted hardware to process SQL queries over the inputs of two or more parties. Currently private data federations compute their queries fully-obliviously, guaranteeing that no information is revealed about the sensitive inputs of a data owner to their peers by observing the query’s instruction traces and memory access patterns. Oblivious querying almost always exacts multiple orders of magnitude slowdown in query runtimes compared to plaintext execution, making it impractical for many applications. KloakDB offers a semi-oblivious computing framework, $k$-anonymous query processing. We make the query’s observable transcript $k$-anonymous because it is a popular standard for data release in many domains including medicine, educational research, and government data. KloakDB’s queries run such that each data owner may deduce information about no fewer than $k$ individuals in the data of their peers. In addition, stakeholders set $k$, creating a novel trade-off between privacy and performance. Our results show that KloakDB enjoys speedups of up to $117$X using k-anonymous query processing over full-oblivious evaluation. …
Unsupervised Recurrent Neural Network Grammars (URNNG)
Recurrent neural network grammars (RNNG) are generative models of language which jointly model syntax and surface structure by incrementally generating a syntax tree and sentence in a top-down, left-to-right order. Supervised RNNGs achieve strong language modeling and parsing performance, but require an annotated corpus of parse trees. In this work, we experiment with unsupervised learning of RNNGs. Since directly marginalizing over the space of latent trees is intractable, we instead apply amortized variational inference. To maximize the evidence lower bound, we develop an inference network parameterized as a neural CRF constituency parser. On language modeling, unsupervised RNNGs perform as well their supervised counterparts on benchmarks in English and Chinese. On constituency grammar induction, they are competitive with recent neural language models that induce tree structures from words through attention mechanisms. …
Return Decomposition for Delayed Rewards (RUDDER)
We propose a novel reinforcement learning approach for finite Markov decision processes (MDPs) with delayed rewards. In this work, biases of temporal difference (TD) estimates are proved to be corrected only exponentially slowly in the number of delay steps. Furthermore, variances of Monte Carlo (MC) estimates are proved to increase the variance of other estimates, the number of which can exponentially grow in the number of delay steps. We introduce RUDDER, a return decomposition method, which creates a new MDP with same optimal policies as the original MDP but with redistributed rewards that have largely reduced delays. If the return decomposition is optimal, then the new MDP does not have delayed rewards and TD estimates are unbiased. In this case, the rewards track Q-values so that the future expected reward is always zero. We experimentally confirm our theoretical results on bias and variance of TD and MC estimates. On artificial tasks with different lengths of reward delays, we show that RUDDER is exponentially faster than TD, MC, and MC Tree Search (MCTS). RUDDER outperforms rainbow, A3C, DDQN, Distributional DQN, Dueling DDQN, Noisy DQN, and Prioritized DDQN on the delayed reward Atari game Venture in only a fraction of the learning time. RUDDER considerably improves the state-of-the-art on the delayed reward Atari game Bowling in much less learning time. Source code is available at https://…/baselines-rudder, with demonstration videos at https://goo.gl/EQerZV. …
If you did not already know
15 Monday Feb 2021
Posted What is ...
in