Control Toolbox (CT) google
We introduce the Control Toolbox (CT), an open-source C++ library for efficient modelling, control, estimation, trajectory optimization and model predictive control. The CT is applicable to a broad class of dynamic systems, but features additional modelling tools specially designed for robotics. This paper outlines its general concept, its major building blocks and highlights selected application examples. The CT was designed for intuitive modelling of systems governed by ordinary differential- or difference equations. It supports rapid prototyping of cost functions and constraints and provides common interfaces for different optimal control solvers. To date, we support Single Shooting, the iterative Linear-Quadratic Regulator, Gauss-Newton Multiple Shooting and classical Direct Multiple Shooting. We provide interfaces to different NLP and linear-quadratic solvers, such as IPOPT, SNOPT, HPIPM, or a custom Riccati solver. The CT was designed with performance for online control in mind and allows to solve large-scale optimal control problems highly efficiently. Some of the key features enabling fast run-time performance are full support for Automatic Differentiation, derivative code generation and thorough multi-threading. For robotics problems, the we offer an interface to a fully auto-differentiable rigid-body dynamics modelling engine. In combination with derivative code generation, this allows for an unprecedented performance in solving optimal control problems for complex articulated robotic systems. …

TransATT google
Attribute acquisition for classes is a key step in ontology construction, which is often achieved by community members manually. This paper investigates an attention-based automatic paradigm called TransATT for attribute acquisition, by learning the representation of hierarchical classes and attributes in Chinese ontology. The attributes of an entity can be acquired by merely inspecting its classes, because the entity can be regard as the instance of its classes and inherit their attributes. For explicitly describing of the class of an entity unambiguously, we propose class-path to represent the hierarchical classes in ontology, instead of the terminal class word of the hypernym-hyponym relation (i.e., is-a relation) based hierarchy. The high performance of TransATT on attribute acquisition indicates the promising ability of the learned representation of class-paths and attributes. Moreover, we construct a dataset named \textbf{BigCilin11k}. To the best of our knowledge, this is the first Chinese dataset with abundant hierarchical classes and entities with attributes. …

Lindy Effect google
The Lindy effect is a theory of the life expectancy of non-perishable things that posits for a certain class of nonperishables, like a technology or an idea, every additional day may imply a longer (remaining) life expectancy: the mortality rate decreases with time. This contrasts with living creatures and mechanical things, which instead follow a bathtub curve, where every additional day in its life translates into a shorter additional life expectancy (though longer overall life expectancy, due to surviving this far): after childhood, the mortality rate increases with time. …

Facetize google
There is a plethora of datasets in various formats which are usually stored in files, hosted in catalogs, or accessed through SPARQL endpoints. In most cases, these datasets cannot be straightforwardly explored by end users, for satisfying recall-oriented information needs. To fill this gap, in this paper we present the design and implementation of Facetize, an editor that allows users to transform (in an interactive manner) datasets, either static (i.e. stored in files), or dynamic (i.e. being the results of SPARQL queries), to datasets that can be directly explored effectively by themselves or other users. The latter (exploration) is achieved through the familiar interaction paradigm of Faceted Search (and Preference-enriched Faceted Search). Specifically in this paper we describe the requirements, we introduce the required set of transformations, and then we detail the functionality and the implementation of the editor Facetize that realizes these transformations. The supported operations cover a wide range of tasks (selection, visibility, deletions, edits, definition of hierarchies, intervals, derived attributes, and others) and Facetize enables the user to carry them out in a user-friendly and guided manner, without presupposing any technical background (regarding data representation or query languages). Finally we present the results of an evaluation with users. To the best of your knowledge, this is the first editor for this kind of tasks. …