Learning to Auto Weight (LAW) google
Example weighting algorithm is an effective solution to the training bias problem. However, typical methods are usually limited to human knowledge and require laborious tuning of hyperparameters. In this study, we propose a novel example weighting framework called Learning to Auto Weight (LAW), which can learn weighting policy from data adaptively based on reinforcement learning (RL). To shrink the huge searching space in a complete training process, we divide the training procedure consisting of numerous iterations into a small number of stages, and then search a low-deformational continuous vector as action, which determines the weight of each sample. To make training more efficient, we make an innovative design of the reward to remove randomness during the RL process. Experimental results demonstrate the superiority of weighting policy explored by LAW over standard training pipeline. Especially, compared with baselines, LAW can find a better weighting schedule which achieves higher accuracy in the origin CIFAR dataset, and over 10% higher in accuracy on the contaminated CIFAR dataset with 30% label noises. Our code will be released soon. …

dask-searchcv google
This library provides implementations of Scikit-Learn’s GridSearchCV and RandomizedSearchCV. They implement many (but not all) of the same parameters, and should be a drop-in replacement for the subset that they do implement. For certain problems, these implementations can be more efficient than those in Scikit-Learn, as they can avoid expensive repeated computations. …

Learning Using Privileged Information (LUPI) google
We adopt a multi-view approach for analyzing two knowledge transfer settings—learning using privileged information (LUPI) and distillation—in a common framework. Under reasonable assumptions about the complexities of hypothesis spaces, and being optimistic about the expected loss achievable by the student (in distillation) and a transformed teacher predictor (in LUPI), we show that encouraging agreement between the teacher and the student leads to reduced search space. As a result, improved convergence rate can be obtained with regularized empirical risk minimization. …

Seq2Seq2Sentiment google
Multimodal machine learning is a core research area spanning the language, visual and acoustic modalities. The central challenge in multimodal learning involves learning representations that can process and relate information from multiple modalities. In this paper, we propose two methods for unsupervised learning of joint multimodal representations using sequence to sequence (Seq2Seq) methods: a \textit{Seq2Seq Modality Translation Model} and a \textit{Hierarchical Seq2Seq Modality Translation Model}. We also explore multiple different variations on the multimodal inputs and outputs of these seq2seq models. Our experiments on multimodal sentiment analysis using the CMU-MOSI dataset indicate that our methods learn informative multimodal representations that outperform the baselines and achieve improved performance on multimodal sentiment analysis, specifically in the Bimodal case where our model is able to improve F1 Score by twelve points. We also discuss future directions for multimodal Seq2Seq methods. …