Klout Score google
Klout is a website and mobile app that uses social media analytics to rank its users according to online social influence via the ‘Klout Score’, which is a numerical value between 1 and 100. In determining the user score, Klout measures the size of a user’s social media network and correlates the content created to measure how other users interact with that content.
Klout Score: Measuring Influence Across Multiple Social Networks


Neural Graph Collaborative Filtering (NGCF) google
Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user’s (or an item’s) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect. In this work, we propose to integrate the user-item interactions — more specifically the bipartite graph structure — into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the user-item graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in user-item graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec and Collaborative Memory Network. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://…/neural_graph_collaborative_filtering.

Unremarkable AI google
Clinical decision support tools (DST) promise improved healthcare outcomes by offering data-driven insights. While effective in lab settings, almost all DSTs have failed in practice. Empirical research diagnosed poor contextual fit as the cause. This paper describes the design and field evaluation of a radically new form of DST. It automatically generates slides for clinicians’ decision meetings with subtly embedded machine prognostics. This design took inspiration from the notion of ‘Unremarkable Computing’, that by augmenting the users’ routines technology/AI can have significant importance for the users yet remain unobtrusive. Our field evaluation suggests clinicians are more likely to encounter and embrace such a DST. Drawing on their responses, we discuss the importance and intricacies of finding the right level of unremarkableness in DST design, and share lessons learned in prototyping critical AI systems as a situated experience. …

Temporal Term Histogram (TTH) google
Temporal text, i.e., time-stamped text data are found abundantly in a variety of data sources like newspapers, blogs and social media posts. While today’s data management systems provide facilities for searching full-text data, they do not provide any simple primitives for performing analytical operations with text. This paper proposes the temporal term histograms (TTH) as an intermediate primitive that can be used for analytical tasks. We propose an algebra, with operators and equivalence rules for TTH and present a reference implementation on a relational database system. …