Model Independent Neural Decoder (MIND)
Standard decoding approaches rely on model-based channel estimation methods to compensate for varying channel effects, which degrade in performance whenever there is a model mismatch. Recently proposed Deep learning based neural decoders address this problem by leveraging a model-free approach via gradient-based training. However, they require large amounts of data to retrain to achieve the desired adaptivity, which becomes intractable in practical systems. In this paper, we propose a new decoder: Model Independent Neural Decoder (MIND), which builds on the top of neural decoders and equips them with a fast adaptation capability to varying channels. This feature is achieved via the methodology of Model-Agnostic Meta-Learning (MAML). Here the decoder: (a) learns a ‘good’ parameter initialization in the meta-training stage where the model is exposed to a set of archetypal channels and (b) updates the parameter with respect to the observed channel in the meta-testing phase using minimal adaptation data and pilot bits. Building on top of existing state-of-the-art neural Convolutional and Turbo decoders, MIND outperforms the static benchmarks by a large margin and shows minimal performance gap when compared to the neural (Convolutional or Turbo) decoders designed for that particular channel. In addition, MIND also shows strong learning capability for channels not exposed during the meta training phase. …
Hierarchical Reinforcement Learning Algorithm via Multi-Goals Abstraction (HRL-MG)
The recommender system is an important form of intelligent application, which assists users to alleviate from information redundancy. Among the metrics used to evaluate a recommender system, the metric of conversion has become more and more important. The majority of existing recommender systems perform poorly on the metric of conversion due to its extremely sparse feedback signal. To tackle this challenge, we propose a deep hierarchical reinforcement learning based recommendation framework, which consists of two components, i.e., high-level agent and low-level agent. The high-level agent catches long-term sparse conversion signals, and automatically sets abstract goals for low-level agent, while the low-level agent follows the abstract goals and interacts with real-time environment. To solve the inherent problem in hierarchical reinforcement learning, we propose a novel deep hierarchical reinforcement learning algorithm via multi-goals abstraction (HRL-MG). Our proposed algorithm contains three characteristics: 1) the high-level agent generates multiple goals to guide the low-level agent in different stages, which reduces the difficulty of approaching high-level goals; 2) different goals share the same state encoder parameters, which increases the update frequency of the high-level agent and thus accelerates the convergence of our proposed algorithm; 3) an appreciate benefit assignment function is designed to allocate rewards in each goal so as to coordinate different goals in a consistent direction. We evaluate our proposed algorithm based on a real-world e-commerce dataset and validate its effectiveness. …
Heterogeneous Simultaneous Multiscale Change Point Estimator (H-SMUCE)
We propose, a heterogeneous simultaneous multiscale change point estimator called ‘H-SMUCE’ for the detection of multiple change points of the signal in a heterogeneous Gaussian regression model. A piecewise constant function is estimated by minimizing the number of change points over the acceptance region of a multiscale test which locally adapts to changes in the variance. The multiscale test is a combination of local likelihood ratio tests which are properly calibrated by scale-dependent critical values to keep a global nominal level a, even for finite samples. We show that H-SMUCE controls the error of overestimation and underestimation of the number of change points. For this, new deviation bounds for F-type statistics are derived. Moreover, we obtain confidence sets for the whole signal. All results are non-asymptotic and uniform over a large class of heterogeneous change point models. H-SMUCE is fast to compute, achieves the optimal detection rate and estimates the number of change points at almost optimal accuracy for vanishing signals, while still being robust. We compare H-SMUCE with several state of the art methods in simulations and analyse current recordings of a transmembrane protein in the bacterial outer membrane with pronounced heterogeneity for its states. An R-package is available on line. …
Shogun
Shogun is and open-source machine learning library that offers a wide range of efficient and unified machine learning methods. …
If you did not already know
20 Wednesday Jan 2021
Posted What is ...
in