Route Constrained Optimization (RCO) google
Distillation-based learning boosts the performance of the miniaturized neural network based on the hypothesis that the representation of a teacher model can be used as structured and relatively weak supervision, and thus would be easily learned by a miniaturized model. However, we find that the representation of a converged heavy model is still a strong constraint for training a small student model, which leads to a high lower bound of congruence loss. In this work, inspired by curriculum learning we consider the knowledge distillation from the perspective of curriculum learning by routing. Instead of supervising the student model with a converged teacher model, we supervised it with some anchor points selected from the route in parameter space that the teacher model passed by, as we called route constrained optimization (RCO). We experimentally demonstrate this simple operation greatly reduces the lower bound of congruence loss for knowledge distillation, hint and mimicking learning. On close-set classification tasks like CIFAR100 and ImageNet, RCO improves knowledge distillation by 2.14% and 1.5% respectively. For the sake of evaluating the generalization, we also test RCO on the open-set face recognition task MegaFace. …

Attentional Encoder Network (AEN) google
Targeted sentiment classification aims at determining the sentimental tendency towards specific targets. Most of the previous approaches model context and target words using recurrent neural networks such as LSTM in conjunction with attention mechanisms. However, LSTM networks are difficult to parallelize because of their sequential nature. Moreover, since full backpropagation over the sequence requires large amounts of memory, essentially every implementation of backpropagation through time is the truncated version, which brings difficulty in remembering long-term patterns. To address these issues, this paper propose an Attentional Encoder Network (AEN) for targeted sentiment classification. Contrary to previous LSTM based works, AEN eschews complex recurrent neural networks and employs attention based encoders for the modeling between context and target, which can excavate the rich introspective and interactive semantic information from the word embeddings without considering the distance between words. This paper also raise the label unreliability issue and introduce label smoothing regularization term to the loss function for encouraging the model to be less confident with the training labels. Experimental results on three benchmark datasets demonstrate that our model achieves comparable or superior performances with a lightweight model size. …

Scattering Transforms (ScatterNets) google
Scattering Transforms (or ScatterNets) introduced by Mallat are a promising start into creating a well-defined feature extractor to use for pattern recognition and image classification tasks. They are of particular interest due to their architectural similarity to Convolutional Neural Networks (CNNs), while requiring no parameter learning and still performing very well (particularly in constrained classification tasks). In this paper we visualize what the deeper layers of a ScatterNet are sensitive to using a ‘DeScatterNet’. We show that the higher orders of ScatterNets are sensitive to complex, edge-like patterns (checker-boards and rippled edges). These complex patterns may be useful for texture classification, but are quite dissimilar from the patterns visualized in second and third layers of Convolutional Neural Networks (CNNs) – the current state of the art Image Classifiers. We propose that this may be the source of the current gaps in performance between ScatterNets and CNNs (83% vs 93% on CIFAR-10 for ScatterNet+SVM vs ResNet). We then use these visualization tools to propose possible enhancements to the ScatterNet design, which show they have the power to extract features more closely resembling CNNs, while still being well-defined and having the invariance properties fundamental to ScatterNets. …

Convolutional Cluster Pooling google
We present a novel and hierarchical approach for supervised classification of signals spanning over a fixed graph, reflecting shared properties of the dataset. To this end, we introduce a Convolutional Cluster Pooling layer exploiting a multi-scale clustering in order to highlight, at different resolutions, locally connected regions on the input graph. Our proposal generalises well-established neural models such as Convolutional Neural Networks (CNNs) on irregular and complex domains, by means of the exploitation of the weight sharing property in a graph-oriented architecture. In this work, such property is based on the centrality of each vertex within its soft-assigned cluster. Extensive experiments on NTU RGB+D, CIFAR-10 and 20NEWS demonstrate the effectiveness of the proposed technique in capturing both local and global patterns in graph-structured data out of different domains. …