Knowledge Authoring Logic Machine (KALM) google
Knowledge representation and reasoning (KRR) is one of the key areas in artificial intelligence (AI) field. It is intended to represent the world knowledge in formal languages (e.g., Prolog, SPARQL) and then enhance the expert systems to perform querying and inference tasks. Currently, constructing large scale knowledge bases (KBs) with high quality is prohibited by the fact that the construction process requires many qualified knowledge engineers who not only understand the domain-specific knowledge but also have sufficient skills in knowledge representation. Unfortunately, qualified knowledge engineers are in short supply. Therefore, it would be very useful to build a tool that allows the user to construct and query the KB simply via text. Although there is a number of systems developed for knowledge extraction and question answering, they mainly fail in that these system don’t achieve high enough accuracy whereas KRR is highly sensitive to erroneous data. In this thesis proposal, I will present Knowledge Authoring Logic Machine (KALM), a rule-based system which allows the user to author knowledge and query the KB in text. The experimental results show that KALM achieved superior accuracy in knowledge authoring and question answering as compared to the state-of-the-art systems. …

Data-Driven Design google
The aim of this research is to introduce a novel structural design process that allows architects and engineers to extend their typical design space horizon and thereby promoting the idea of creativity in structural design. The theoretical base of this work builds on the combination of structural form-finding and state-of-the-art machine learning algorithms. In the first step of the process, Combinatorial Equilibrium Modelling (CEM) is used to generate a large variety of spatial networks in equilibrium for given input parameters. In the second step, these networks are clustered and represented in a form-map through the implementation of a Self Organizing Map (SOM) algorithm. In the third step, the solution space is interpreted with the help of a Uniform Manifold Approximation and Projection algorithm (UMAP). This allows gaining important insights in the structure of the solution space. A specific case study is used to illustrate how the infinite equilibrium states of a given topology can be defined and represented by clusters. Furthermore, three classes, related to the non-linear interaction between the input parameters and the form space, are verified and a statement about the entire manifold of the solution space of the case study is made. To conclude, this work presents an innovative approach on how the manifold of a solution space can be grasped with a minimum amount of data and how to operate within the manifold in order to increase the diversity of solutions. …

MG-WFBP google
Distributed synchronous stochastic gradient descent has been widely used to train deep neural networks on computer clusters. With the increase of computational power, network communications have become one limiting factor on system scalability. In this paper, we observe that many deep neural networks have a large number of layers with only a small amount of data to be communicated. Based on the fact that merging some short communication tasks into a single one may reduce the overall communication time, we formulate an optimization problem to minimize the training iteration time. We develop an optimal solution named merged-gradient WFBP (MG-WFBP) and implement it in our open-source deep learning platform B-Caffe. Our experimental results on an 8-node GPU cluster with 10GbE interconnect and trace-based simulation results on a 64-node cluster both show that the MG-WFBP algorithm can achieve much better scaling efficiency than existing methods WFBP and SyncEASGD. …

Uncertainty Prediction Problem google
Machine learning algorithms have been effectively applied into various real world tasks. However, it is difficult to provide high-quality machine learning solutions to accommodate an unknown distribution of input datasets; this difficulty is called the uncertainty prediction problems. …